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ABSTRACT Encrypted Client Hello (ECH) reduces information leakage in encrypted packet connections,
thereby complicating traditional Deep Packet Inspection (DPI) methods. While various machine learning
approaches have been proposed for classifying ECH network connections, prior research typically requires
lengthy observation times and focuses on a limited set of applications in constrained environments. This
study demonstrates a highly accurate classification mechanism capable of identifying a large number of
applications in real-world traffic within one second. To train our models we created a novel dataset derived
from operational network traffic, ensuring relevance and diversity in training and evaluation. Furthermore,
we propose a novel hierarchical approach that leverages protocol-specific knowledge, enabling scalable
and efficient classification in operational settings. Our findings highlight the effectiveness of leveraging
short Per Packet Information (PPI) sequences and domain-specific features to overcome the challenges
posed by ECH, achieving performance superior to that of existing methods.

INDEX TERMS Encrypted Client Hello (ECH), Transport Layer Security (TLS), Encrypted Traffic
Classification, Deep Packet Inspection (DPI), Machine Learning in Networking, Network Traffic Analysis,
Real-Time Systems, Per Packet Information (PPI).

I. Introduction

SERVICE Providers require visibility into network traffic
for a variety of critical tasks, including security, Quality

of Service (QoS) monitoring, policy enforcement, congestion
management, differentiated charging, regulatory compliance,
and user sentiment analysis. Traditionally, Deep Packet In-
spection (DPI) has been the primary method for enabling
these capabilities, leveraging packet contents to accurately
classify network traffic.

In the Internet protocol (IP) suite, packets are crafted to
be self-describing, comprising a sequence of packet headers
before the user content. This structure facilitates standards-
based recursive parsing by the intended recipient, but has the
unintended consequence of revealing information about the
packet to potentially malicious parties observing the packet
on its way from source to destination. This situation has been
rectified by adding various cryptographic mechanisms, and it
is now often stated that the great majority of Internet traffic
is encrypted.

However, this statement regarding the ubiquity of encryp-
tion actually only signifies that user content is encrypted,
while Internet packet headers still include unencrypted meta-

data. This metadata can be exploited by Deep Packet Inspec-
tion (DPI) to identify the application being used.

A notable (but far from the only) example of unencrypted
fields are those in the Transport Layer Security (TLS) hand-
shake. The TLS handshake is used by two parties wishing
to securely communicate, before they have established their
secure channel, and consists of a Client Hello (CH) message
followed by a Server Hello (SH) message. The CH specifies
the cipher suites the client supports, various crypto-related
parameters, and optionally the name of the server (SNI) the
client wants to reach (since there may be many virtual servers
hosted behind a single IP address!). Since the cipher suite
has not yet been agreed, the CH message is unencrypted,
passing SNI and other information in the clear.

Over the past few years Internet traffic has become more
fully encrypted, with sophisticated methods of encrypting
overhead fields, including encrypted Client Hello (ECH) [1].
ECH, as its name implies, encrypts the TLS CH message
using a public key previously obtained.

While encrypting metadata enhances privacy, it introduces
significant challenges for DPI systems, impacting essential
functions like security, QoS monitoring, and regulatory com-
pliance. However, encrypted traffic still exhibits observable
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statistical patterns in packet sequences. Characteristics such
as packet directionality (client-to-server vs. server-to-client),
packet sizes, and inter-packet timing may form unique signa-
tures for different applications. For example, video streaming
traffic consists of sequences of client requests followed by
server responses consisting of many large packets inter-
spersed with acknowledgments, while voice calls exhibit
more symmetric behavior with intermediate sized packets
in both directions.

Previous machine learning approaches have explored clas-
sification using packet size and timing statistics. However,
they suffered from limitations: (1) high computational and
energy costs compared to rule-based DPI systems, (2) re-
liance on long packet sequences, making them unsuitable
for scenarios such as blocking, and (3) only classifying
small numbers of applications (as compared to thousands
of applications recognized by DPI systems)..

This paper makes the following key contributions:

• We introduce a novel, real-world dataset capturing
encrypted traffic from an operational network, ensur-
ing diverse and representative training and evaluation
conditions.

• We develop a high-accuracy classification mechanism
capable of distinguishing a large set of applications with
only one second of real-world traffic observation.

• We propose a hierarchical classification framework that
leverages domain-specific knowledge, grouping traffic
based on visible server IP addresses to enhance scala-
bility and efficiency under ECH constraints.

• We demonstrate that short packet sequences (as few as
10 packets) can be sufficient for classification, enabling
fast decision-making with minimal input data.

Our findings highlight the effectiveness of leveraging
packet-level behavioral features to overcome the challenges
posed by ECH. The proposed hierarchical model further
improves classification efficiency by assigning smaller, spe-
cialized classifiers to subsets of applications, maintaining
high accuracy while reducing computational overhead.

II. Background and Related Work
Recent research has demonstrated the potential of machine
learning (ML) techniques for classifying encrypted traffic.
Early attempts were based on the byte content of packets of
the connection, such as IP addresses and SNI [2]–[7], and are
thus rendered ineffective in the presence of ECH. Subsequent
studies exploited statistical features of traffic patterns, such
as histograms of packet sizes and inter-arrival times. How-
ever, these methods often require long observation windows
(e.g., 30 seconds or more) [8], [9], rendering them unsuitable
for many scenarios. A recent paper from Huawei France [10]
achieves 90% accuracy across the top 200 applications of a
proprietary dataset by analyzing the Per Packet Information
(PPI) of the first 100 packets in TCP connections or 10
packets in UDP connections. However, requiring 100 packets

significantly increases classification delay and limits real-
time applicability.

To date, most studies have focused on a small number
of applications (fewer than 20) [2]–[6], [11], [12], limit-
ing their applicability in operational settings. For instance,
FlowFormers [9] employs attention-based Transformers for
classification within 10 seconds but has only been evaluated
on a 5-class problem.

Existing datasets often lack the diversity and relevance
needed for operational use. For instance, [13]–[15] are
already outdated, while others rely on simulated traffic [16]
or advanced data augmentation techniques to compensate for
limited data diversity [17]. Proprietary datasets further hinder
reproducibility and fair benchmarking [10], [11].

The CESNET datasets [18], [19] are valuable sources of
encrypted traffic data but also exhibit several limitations. A
first dataset, limited to TLS/TCP traffic, was collected over
two weeks in 2021, while a QUIC-only dataset was collected
over a month in 2022. The former encompasses some 200
applications, while the latter has far fewer due to QUIC still
having been in nearly stages of adoption. Both include the
PPI of 30 packets for each connection and label connections
based on the SNI.

Despite these advancements, a significant gap remains in
the literature. To the best of our knowledge, no prior work
has conducted a comprehensive, large-scale study targeting
the classification of a substantial number of applications
under stringent time constraints1. Our combination of real-
world data, real-time applicability, and hierarchical classi-
fication represents a significant step forward in encrypted
traffic classification, overcoming the limitations of existing
approaches.

III. Problem Formulation
The goal of this study is to classify encrypted network traffic
into a predefined set of applications under strict time and data
constraints. We limit ourselves to features observable in the
presence of ECH.

Formally, let C = (PCI,PPI) represent a single net-
work connection comprising: Per Connection Information
PCI = (DestIP,DestPort, protocol) and a sequence of k
packets with corresponding per packet information PPI =
⟨PPI1,PPI2, . . . ,PPIk⟩ where DestIP,DestPort are the des-
tination IP address and port number, protocol is the layer
4 protocol (e.g., TCP or UDP) and each PPIi includes:
(∆ti, si, di), where ∆ti is the arrival time of the i-th packet
relative to the first packet (in milliseconds), si is the size
of the i-th packet (in bytes) and di is the direction of the
i-th packet (client-to-server or server-to-client). The task is
to classify a connection C into one of M application classes:
Apps = {App1,App2, . . . ,AppM}.

The classification task must furthermore adhere to the
following constraints: the number of packets per connection,

1A preliminary version of this work was presented at CSCML 2024 and
is available as a technical report [20].
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k, is limited to a predefined maximum (e.g., 50), and the
total observation time for any connection, max(∆ti), must
not exceed a specified threshold (e.g., 1 second).

Formally, given a training dataset of annotated connections
Xtrain = {ci}ni=1,Ytrain = {appi}ni=1, the objective is to learn
a classification model f : X → Y that maps a connection
c to a predicted application Appk ∈ Apps, minimizing the
overall classification error.

The model performance is evaluated on a separate test
dataset of connections collected over a later time span
Xtest,Ytest to assess its generalization capacity.

IV. Dataset Construction
A. Data Collection
The dataset for this study was derived from live network
traffic captured in a large mobile network starting in Septem-
ber 2024. To capture variability in network conditions and
reflect a diverse range of usage patterns, the raw traffic was
partitioned into two subsets, each spanning approximately
four days (covering both weekdays and weekends). The first
subset was reserved for model training, while subsequent
subset, collected at later dates, served as the test set.

Traffic data was collected by enhancing a commercial real-
time DPI system from Allot Ltd.2 operating in tap mode on
an N×100 Gbps bidirectional line. This DPI system is highly
fine-grained and can differentiate between sub-applications
from the same provider. For example, it distinguishes be-
tween Facebook browsing, Facebook video streaming, and
Facebook video uploads as distinct applications. Such gran-
ularity ensures detailed and accurate labeling.

The DPI system assigns application labels (AppID) using
a proprietary rule set that is updated biweekly. The system
achieves approximately 95% coverage of network connec-
tions (leaving only about 5% unclassified) and exhibits an
extremely low misclassification rate compared to simpler
labeling approaches, such as relying solely on Server Name
Indication (SNI) [11] or server IP addresses. These attributes
make it particularly well-suited for generating high-quality
labeled datasets for machine learning tasks.

Additionally, connections are sampled by hashing the
client IP address, enabling us to vary the sampling rate.
Overall, the captured data encompasses 195 hours of traffic,
comprising 313 million raw connections (averaging 445
connections collected per second).

We further filtered out the following uninformative con-
nections:

• 146 million (47%) unencrypted DNS sessions,
• 31 million (10%) connections insufficiently identified

by the DPI system.

The fact that half of the connections were DNS is to be
expected. Of the insufficiently specified connections, over
half were truly unknown applications (to be expected since
the DPI coverage is on the order of 95%) and the rest

2https://allot.com/network-intelligence/technology/traffic-identification/

were only partially identified. In any case such connections
are uninteresting for training purposes and were removed,
leaving 136 million nontrivial labeled connections.

B. The Dataset Format
Each network connection is represented by connection-level
identifiers (the 5-tuple consisting of two IP addresses, the
layer-4 protocol, and two TCP/UDP port numbers), an array
of up to 50 PPI entries (collected under the one-second con-
straint), and an application label. To preserve user privacy,
all IP addresses are anonymized using the prefix-preserving
CryptoPAN algorithm [21].

The following table (Table 1) summarizes the fields for
each connection.

TABLE 1. Dataset Fields for Each Network Connection

Per-Connection Fields
Field Description
Time of first packet

For reference only
Not used for classification

Obfuscated source IP
Source port number

Obfuscated destination IP Destination IP address after anonymization

Layer 4 protocol number Protocol used (e.g., UDP, TCP)

Destination port number Port number (e.g., 443/8443, 80/8080)

AppID Numeric label identifying the application

Length of PPI array Up to 50 packets

Per-Packet Fields
Field Description
Packet arrival time Arrival time relative to the first packet in mil-

liseconds

Packet direction Client-to-server or server-to-client

Packet payload size Size in bytes (corresponding to TCP/UDP pay-
load)

Flag byte Encodes protocol-specific information

The flag byte contains additional information and is
treated differently based on the protocol: For TCP packets,
it encodes the eight TCP flags, of which only the SYN flag
is used for classification. For UDP packets, it includes the
first byte of the UDP payload. In the case of QUIC packets,
this byte holds four unencrypted bits (e.g., header format,
fixed bit, long packet type field), but only the header format
bit is used for classification.

The AppID label is supplied by the commercial DPI
system and is further detailed in the following subsection.

C. Dataset Statistics
Table 2 summarizes key statistics of the dataset, which
comprises a total of 136,201,280 connections. The table
details the number of connections, client IPs, and server IPs
for both the training and test sets, collected over two non-
overlapping periods in September 2024.

A total of 823 applications were reported by the DPI in
the dataset. Of the 763 applications in the training set, 115
appear in over 0.05% of the connections. Applications that
attracted at least 1% of connections are presented in Table
3.
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TABLE 2. Key Statistics of the Dataset

Field Train Test All
Date span (Sep. 2024) 5-9 13-17 5-9,13-17

Total number of connections 63,067,349 73,133,931 136,201,280

Total number of client IPs 227,296 278,729 489,586

Total number of server IPs 521,011 521,017 924,755

TABLE 3. Most popular applications with their appearance percentages.

GoogleServices 14.56 % WhatsApp Transfer 2.08 %

TikTok 10.55 % Google Search 2.01 %

Facebook 6.98 % Advertisements 1.98 %

AppleServices 6.66 % Computing sites 1.76 %

WhatsApp 4.37 % Telegram 1.61 %

Instagram 3.79 % YouTube 1.43 %

Analytics 3.33 % iTunes 1.36 %

Google Play 3.33 % Banners 1.29 %

Other (< 0.05%) 3.03 % Snapchat 1.27 %

iCloud 2.90 % Generic CDN 1.19 %

YouTube Browsing 2.22 % Facebook Chat 1.14 %

The reader will note that applications are identified by
the DPI system in an actioanable manner. For instance, the
most popular application, entitled GoogleServices, is actually
an aggregate of multiple Google-provided services that are
mostly transparent to the user, including push notifications,
time services, website optimizations, translation, etc. Apple-
Services includes similar miscellaneous facilities related to
Apple products. Analytics and advertisements are as their
name implies from many different servers. We note that these
application popularities are highly dependent on the network
being a mobile network, and fixed networks would have
different statistics. For example, Netflix accrues only about
0.1 % in this cellular network, while it is usually one of the
more popular applications in fixed networks. Furthermore,
application popularity is highly dependent on locality.

In terms of the relationship between server IP addresses
and applications, over the training set, ∼91% of the server IP
addresses are associated in the data to a single application,
6% to two applications and 1% to three. However, in terms
of connections, only ∼10% of the connections are to a server
IP which is mapped in the training set to a single application.

D. Dataset Availability
A sample of the dataset in CSV format has been made
publicly available via a GitHub repository3. The full dataset
is available for academic purposes and can be obtained by
contacting the corresponding author.

V. Methodology
In this study, we develop and evaluate three baseline models
— a Random Forest classifier, an LSTM neural network, and

3https://bit.ly/40oluem

an LSTM with Attention — to classify encrypted network
traffic based on PPI features. In addition, we propose a
novel hierarchical classification model that groups connec-
tions based on server IP addresses and trains separate ML
models on each group, thereby leveraging domain-specific
knowledge to improve scalability and accuracy.

A. Baseline Models
We trained two types of classifiers (a Random Forest and
a Long Short-Term Memory (LSTM) neural network) and
employed two stratagems (hierarchical and flat). Comparing
the resulting four architectures enables assessing the effec-
tiveness of conventional machine learning approaches versus
deep learning methods, as well as the value of exploiting
domain-specific knowledge.

In addition, we trained an additional LSTM model aug-
mented with an attention mechanism to explore its po-
tential for enhancing sequence modeling and improving
classification accuracy. The attention mechanism allows the
model to focus selectively on the most relevant parts of the
input sequence, potentially improving performance for PPI
sequences with complex temporal dependencies.

We first evaluated the models under two configurations:
one that excluded protocol-specific knowledge, aligning with
the flat (non-hierarchical) methods typically described in the
literature, and another that incorporated this knowledge by
including the server’s IP address as a feature. This approach
enabled a comparative analysis to determine the impact of
domain-specific features on classification performance.

1) Random Forest Classifier
A Random Forest classifier was employed as a baseline
model for classifying encrypted network traffic. Given that
the connections are of variable number of packets, we first
converted the PPI data into fixed-length feature vectors
by zero-padding each sequence to the maximum packet
length we allow for training. The individual PPI components,
namely, packet time, direction, size, and flags, were extracted
and padded accordingly, and then concatenated with per-
connection features (including the Layer-4 protocol number,
destination port, and the PPI sequence length).

We also tested a configuration in which the server’s IP
address was incorporated as an additional per-connection
feature. To achieve this, the server IP was transformed into
a numeric representation: IPv4 addresses were converted
into their 32-bit integer equivalents, while IPv6 addresses
were converted into their full 128-bit integer representations.
This conversion allowed the Random Forest to leverage
the server IP as a meaningful numerical feature without
requiring further normalization, given the model’s inherent
scale invariance.

4 VOLUME ,
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2) LSTM Neural Network
To better capture the temporal dependencies in the packet-
level data, we developed a deep LSTM neural network that
processes variable-length sequences. The architecture inputs
the same per-connection and per-packet information as the
Random FOrest model, but does not pad the PPI.

Initially, the PPI sequence is processed using a Pack
Padded Sequence operation to handle variable-length inputs.
The packed sequence is then fed into a stack of four LSTM
layers (each with 128 hidden units), which capture the
temporal dynamics of the packet sequences. After process-
ing, the sequence is unpacked and the final hidden state
corresponding to the last time step (of size 128) is extracted
as a compact representation of the sequence.

To incorporate the server’s IP address into the model, the
IP is first converted into an integer representation. For com-
patibility with the LSTM, this numeric value is normalized
to the range [0, 1] and then concatenated with other per-
connection features (protocol number, destination port, and
PPI length), resulting in a combined feature vector.

The combined feature vector is then passed through two
fully connected layers: first, FC Layer 1 reduces the input (of
size 131, comprising 128 from the LSTM output plus 3 scalar
per-connection features, or 4 if the server IP is included)
to 64 dimensions; next, a ReLU activation is applied to
introduce non-linearity; finally, FC Layer 2 transforms the
64-dimensional vector into C class scores, where C is the
number of application classes.

Figure 1A illustrates the overall architecture of the LSTM
model.

3) LSTM with Attention
In addition to the basic LSTM architecture, we enhanced our
model by incorporating an attention mechanism to further
improve exploitation of temporal dependencies in the packet-
level data. Unlike the standard LSTM, which relies solely
on the final hidden state to summarize the entire sequence,
the attention mechanism dynamically computes a weighted
sum of the hidden states from all time steps. This context
vector highlights the most informative parts of the sequence,
allowing the model to focus on critical patterns that may
otherwise be diluted in a single, compressed representation.
After the LSTM layers produce a sequence of outputs, the
attention mechanism computes the context vector (of size
128), which is then concatenated with the per-connection
features (e.g., protocol number, destination port, PPI length,
and optionally the server’s IP address). The resulting com-
bined feature vector is subsequently fed through two fully
connected layers that output class scores for each application.
Figure 1B illustrates the overall architecture of the LSTM
with Attention model.

Per-Connection Inputs
(protocol, destPort, ppiLen)

Per-Packet Inputs
(ppi pdt, ppi pd,

ppi flag byte, ppi ps)

(size: 128 + 3 = 131)

FC Layer 1
(131 → 64)

ReLU Activation

FC Layer 2
(64 → num classes)

Output
(Class Scores)

LSTM Layer 1
Input size: 4 (Per Packet)

Hidden size: 128

LSTM Layer 2
Input size: 128

Hidden size: 128

LSTM Layer 3
Input size: 128

Hidden size: 128

LSTM Layer 4
Input size: 128

Hidden size: 128

A. Concat
B. Attention Mechanism
(size: 128)

Sequence Data
(size per time step: 4)

Output from Last Time Step
(size: 128)

FIGURE 1. Architecture of the LSTM. (A) without and (B) with Attention.

B. Hierarchical Classification
In contrast to the standard flat classification approach, which
employs a single monolithic approach to classify all network
connections, we propose a hierarchical classification model
that leverages domain-specific knowledge inherent in the
server IP address left not encrypted even under ECH. In
our hierarchical approach, the training data is first partitioned
into groups based on server IP, and then a dedicated classifier
is trained for each group. This approach not only simplifies
and accelerates the training process but also reduces the
impact of misclassification errors by limiting them to a
subset of related applications.

The overall flow of our proposed hierarchical classification
model is illustrated in figure 2.

The first level of our hierarchy identifies server IP ad-
dresses that predominantly host a single application. For-
mally, let S denote the set of all server IP addresses in the
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Model Selection

connection input

Model 1

IP Group 1

Model 2

IP Group 2

Model 3

IP Group 3

... Flat Model

Unknown IP

Single App Id

Essentially Single AppId

Classification Report

FIGURE 2. Hierarchical Decision Flow

training data. For each address s ∈ S, let Ns be the total
number of connections associated with s and Ns(App) the
number of connections labeled with application App. We
define the dominant application for server s as

App∗
s = argmax

App
Ns(App),

and consider s to host essentially a single application if

Ns(App∗
s)

Ns
≥ τ.

where τ is a threshold parameter (set to 0.95 in our exper-
iments). For these servers, classification is straightforward:
the predicted application is simply App∗

s .
The second layer of our hierarchy involves popular server

IP addresses hosting multiple applications. We partition such
server IP addresses into distinct groups. Once the groups are
defined, a separate classifier is trained for each group. Three
grouping strategies were considered: ASN-based grouping,
application-based grouping, and application distribution clus-
tering.

Connections corresponding to server IP addresses not
identified in the first or second levels are handed off to a
single flat classifier trained on the entire dataset.

Several grouping strategies were considered, including
ASN-based grouping, application-based grouping, and ap-
plication distribution clustering.
ASN-based Grouping: This method maps server IP ad-
dresses to their corresponding Autonomous System Numbers
(ASNs), under the assumption that servers within the same
AS are likely to host the same applications. For instance,
server IP addresses associated with Google’s ASN (15169)
typically host Google services (e.g., Google Search, Gmail,

Google Maps, or YouTube), whereas those in Meta’s ASN
(32934) generally host Facebook, Instagram, or WhatsApp.
A drawback of this approach is that large companies may
subdivide their IP address resources, meaning not all ad-
dresses within an ASN necessarily host the same services.
Application-based Grouping: In this approach, servers are
partitioned based on the dominant application that constitutes
a significant portion of their activity. All server IP addresses
with the same dominant application are grouped together,
facilitating targeted model training on a more homogeneous
subset of traffic.
Application Distribution Clustering: This method groups
servers by analyzing the probability distribution of appli-
cations they serve. For each server, the algorithm computes
the distribution of application labels, and servers with similar
distributions are clustered together. This approach captures
nuanced similarities in application usage patterns, potentially
leading to more effective grouping.

In the following we report results for ASN-based group-
ing; we map popular server IP addresses to their ASN using
publicly available information. In our training set we found
11 popular ASN groups (encompassing over 45% of the
connections) with between 10 and 30 applications per group.
As expected, ASN groups included Google, Apple, Amazon,
Microsoft, Akamai, Cloudflare, and several CDNs.

VI. Experimental Setup
A. Experimental Configuration and Evaluation
Our dataset contains over 800 distinct applications; however,
many of these occur so infrequently that they are not prac-
tical for separate classification. Therefore, we aggregate all
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applications appearing in less than 0.05% of the connections
into a single label, Other. This aggregate label is the expected
output for applications appearing in the test set but that were
absent from the training set.

We evaluate our models using standard classification met-
rics: Precision, Recall, and F1-score. We compute these
metrics for each class individually and then combine them
using weighted averaging in order to account for potential
class imbalance.

B. Hyperparameter Settings and Implementation Details
We utilized scikit-learn to train the Random Forest classifier
and PyTorch for the LSTM-based models. For the Random
Forest classifier, we used 15 trees with a maximum depth
of 35 and a random state of 42 to ensure reproducibility.
The entire training dataset was utilized without a separate
validation split.

For the LSTM models, input sequences were first pro-
cessed using the Pack Padded Sequence operation to ac-
commodate variable-length PPI data. The LSTM architecture
consists of four stacked layers, each with 128 hidden units.
Following the LSTM layers, the extracted features are con-
catenated with per-connection features and passed through
two fully connected layers: the first reduces the combined
feature vector from 131 to 64 dimensions (with ReLU
activation), and the second maps the 64-dimensional vector
to C class scores, where C is the number of application
classes. The LSTM-based models were trained using the
Adam optimizer with an initial learning rate of 10−3 and a
StepLR scheduler that reduces the learning rate by a factor
of 0.5 every 5 epochs. Training was performed for 20 epochs
with a batch size of 128, and gradient clipping (maximum
norm of 5) was applied to prevent diverging gradients.

The hierarchical classification approach utilizes the same
configurations as the baseline models. However, it trains
separate classifiers for each server group, enabling a more
tailored and scalable approach.

To comprehensively evaluate our methodology, we con-
ducted experiments under multiple configurations. For the
baseline (flat) models, each model was evaluated both with
and without the inclusion of the server IP as an additional
per-connection feature, and under two PPI length limits: 10
and 50 packets. In parallel, the hierarchical classification
approach employing ASN-based grouping was tested using
all three underlying baseline architectures (Random Forest,
LSTM, and LSTM with Attention) under both 10 and 50
PPI length limits. This experiment design enables a detailed
analysis of the impact of protocol-specific features and
sequence length on classification performance.

VII. Results and Analysis
Table 4 presents a comprehensive comparison of the three
baseline models (Random Forest, LSTM, and LSTM with
Attention) evaluated under two packet length restrictions
(10 and 50 packets) and with two baseline configurations

(with and without the inclusion of the server IP as an
additional feature) as well as the proposed hierarchical
approach. The table shows that performance, as measured
by Precision, Recall, and F1 Score, is highly sensitive to
both the packet restriction and the use of protocol-specific
features. In general, reducing the packet restriction hampers
results, due to the reduced amount of input information
available for classification. Notably, the Random Forest
model benefits significantly from incorporating the server IP
feature, particularly when using the shorter (10-packet) limit,
where it actually achieved the best performance overall. For
the 50-packet restriction no clear winner emerges among the
baseline models, suggesting that the additional input data
mitigates the advantages of protocol-specific features. These
findings underscore the importance of optimizing both the
feature configuration and the packet length restriction to
achieve accurate real-time classification of encrypted traffic.

Our experiments further show that our proposed hierarchi-
cal approach consistently outperforms the flat classification
approach. Specifically, when using a packet restriction of 50,
the best performing model is the hierarchical model using
deep LSTM model with attention achieving approximately
95% accuracy - a 5% improvement over the equivalent flat
model.

There seems to be no significant advantage for deep
learning models in this problem. Although there is a slight
performance improvement when operating on 50 packets, it
remains insufficient to justify the complexity and compu-
tational overhead of deep learning approaches—especially
in real-time systems that would require dedicated hardware
such as GPUs.

A detailed comparison reveals that while the Random
Forest model benefits significantly from the inclusion of
the server IP feature—especially at the 10-packet restric-
tion—the LSTM-based models exhibit varying performance
trade-offs. In fact, the Random Forest classifier outperforms
the LSTM model at the shorter packet restriction, likely
because the LSTM’s ability to capture temporal patterns is
diminished when fewer packets are available. Additionally,
incorporating an Attention layer did not yield noticeable im-
provements, suggesting that the features (e.g., packet sizes,
directions, and inter-arrival times) do not present distinct key
points that benefit from selective focusing.

The hierarchical approach consistently outperformed the
flat architecture by more than 5% in accuracy. The 10 packet
restriction led to some performance degradation, but the the
impact was not substantial. We conclude that this approach
more effectively leverages domain-specific information than
merely adding server IP address to the input, in addition to
being more scalable and maintainable.

VIII. Distributional Drift Analysis
Due to the dynamic nature of modern applications, machine
learning models often experience a decline in performance
when applied to data collected at later time periods. This
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TABLE 4. Model Performance for Different Configurations

Packet Restriction Model Config.
Random Forest LSTM LSTM w/ Attention

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

50
Flat 88.42 88.26 88.07 90.06 89.93 89.84 90.18 90.09 89.99

+ Server IP 90.72 90.63 90.47 89.13 89.05 88.95 88.11 88.09 87.93
Hierarchical 93.58 93.54 93.42 94.68 94.64 94.57 94.83 94.79 94.73

10
Flat 88.15 88.11 87.92 86.34 86.35 86.05 86.25 86.19 85.94

+ Server IP 90.66 90.66 90.50 86.39 86.45 86.15 87.47 87.50 87.25
Hierarchical 92.71 92.71 92.58 92.15 92.12 91.97 92.52 92.46 92.32

distributional drift arises from new application releases,
modifications in communication protocols, shifts in user
behavior, and the adoption of emerging technologies. Con-
sequently, the accuracy of models trained on historical data
is expected to decline over time.

Addressing distributional drift typically requires continu-
ous monitoring and periodic model retraining. While tech-
niques like online learning, domain adaptation, and transfer
learning have been proposed, they often introduce addi-
tional computational overhead and complexity. To better
understand the practical impact of drift on our model’s
performance, we conducted an experimental evaluation using
test datasets collected at later time intervals.

A. Additional Dataset Collection and Evaluation
To assess the quantitative effects of distributional drift, we
collected additional datasets from the same large mobile net-
work operator at intervals of one and two months following
the initial model training period. Each drift dataset spans
approximately four days of network traffic, covering both
weekdays and weekends, to capture a representative range of
network conditions and user behaviors. The temporal spacing
of one and two months was chosen to reflect potential
shifts in traffic patterns due to seasonal changes, application
updates, and evolving user trends. These drift-testing datasets
underwent the same preprocessing pipeline, and were evalu-
ated using the same metrics as the original training and test-
ing datasets, enabling consistent performance comparisons.

B. Results
Table 5 presents the F1 performance of all model con-
figurations evaluated on test data collected one week (the
original test set), one month, and two months after training.
Overall, the results indicate a consistent drop in F1 score
over time. The performance drop varies with configuration,
being generally less pronounced for hierarchical approach
and more significant for the 10-packet PPI length restriction
case.

The hierarchical approach, with its protocol-specific
grouping, experiences an F1 score drop of approximately
2% after one month. Despite this moderate degradation, it
maintains an F1 score above 90% even after two months,
showcasing its robustness. In contrast, the flat models exhibit
significantly higher performance drops, particularly in the

second month. For example, the Random Forest model under
the flat configuration drops by 2.41% at one month and
8.73% at two months, compared to the hierarchical model
which only drops by 1.68% and 3.60%, respectively.

The inclusion of server IP information in the flat models
does not prevent their performance from degrading over time.
These results underscore the effectiveness of the hierarchical
approach for dynamic environments, where distributional
drift is inevitable. The ability to maintain performance well
beyond the one-month mark validates the hierarchical ap-
proach’s potential in long-term deployment scenarios.

Figure 3 shows the F1 score trends for selected IP
groups when using the hierarchical model with a 50-packet
PPI restriction and the Random Forest classifier applied
to each group. Our analysis reveals distinct drift patterns
across different groups. Stable groups—such as the ASN-
based groups for Apple, Microsoft, and the single AppId
group—exhibit only minor performance degradation (ap-
proximately a 2% drop in F1 score after one month) and
maintain F1 scores above 90% even after two months. In
contrast, moderate shifts are observed in some groups (e.g.,
the Google group), where the F1 score declines signifi-
cantly within one month, indicating that these groups may
require targeted updates. Additionally, delayed degradation
is evident in groups such as Facebook and Amazon, where
performance remains relatively stable after one month, but
drops markedly by the two-month mark.

Further analysis shows that the number of PPIs required
for the model to achieve optimal performance may vary
across different groups. In some groups, such as Apple or
Microsoft, the difference in performance between processing
50 and 10 packets is negligible. While in others, e.g.,
Amazon, comparable results are achievable even with only
10 packets over all time periods.

These findings support a selective retraining strategy,
where only server groups that exhibit substantial drift are
updated. By focusing retraining efforts on groups experi-
encing significant performance degradation, computational
costs can be reduced while maintaining resilience against
drift, thereby extending the system’s usability in real-world,
dynamic environments.
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TABLE 5. Distributional Drift Performance Comparison

packet restriction Model Config. Method
One Week One Month Two Months

F1 (%) F1 (%) Drop (1m%) F1 (%) Drop (1m%) Drop (2m%)

50

Flat Model
Random Forest 88.07 85.95 2.41 80.38 6.48 8.73
LSTM 89.84 87.64 2.45 81.90 6.55 8.84
LSTM w/ Attention 89.99 87.58 2.68 82.01 6.36 8.87

Flat w/ Server IP
Random Forest 90.47 87.24 3.57 82.12 5.87 9.23
LSTM 88.95 86.48 2.78 81.58 5.67 8.29
LSTM w/ Attention 87.93 85.61 2.64 80.17 6.35 8.83

Hierarchical
Random Forest 93.42 91.85 1.68 90.06 1.95 3.60
LSTM 94.57 92.93 1.73 90.98 2.10 3.80
LSTM w/ Attention 94.73 92.90 1.93 90.91 2.14 4.03

10

Flat Model
Random Forest 87.92 85.70 2.53 79.95 6.71 9.07
LSTM 86.05 83.65 2.79 77.59 7.24 9.83
LSTM w/ Attention 85.94 83.41 2.94 77.26 7.37 10.10

Flat w/ Server IP
Random Forest 90.50 88.50 2.21 83.15 6.05 8.12
LSTM 86.15 83.46 3.12 77.31 7.37 10.26
LSTM w/ Attention 87.25 84.78 2.83 78.72 7.15 9.78

Hierarchical
Random Forest 92.58 90.85 1.87 89.35 1.65 3.49
LSTM 91.97 89.98 2.16 88.43 1.72 3.85
LSTM w/ Attention 92.32 90.32 2.17 88.80 1.68 3.81

FIGURE 3. F1 score trends for selected IP groups over time using the
hierarchical model with a 50-packet PPI restriction and a Random Forest
classifier. The figure illustrates the degradation in performance from one
week to one month to two months, highlighting groups with stable
performance, moderate shifts, and delayed degradation.

IX. Conclusions
In this work, we have addressed the challenge of real-
time classification of encrypted network traffic in the pres-
ence of Encrypted Client Hello (ECH). The introduction of
ECH significantly impacts the effectiveness of traditional
Deep Packet Inspection (DPI) systems, necessitating more
sophisticated machine learning techniques. Unlike previous
studies that mostly focus on small-scale datasets with lim-
ited application diversity and long observation delays, our

work provides a practical, real-world solution capable of
identifying over 100 applications with only one second of
observation. We furthermore proposed a novel hierarchi-
cal classification approach that integrates domain-specific
knowledge by leveraging server IP addresses, which remain
unencrypted under ECH. Compared to conventional flat clas-
sification approaches, our hierarchical model offers multiple
advantages:

• Improved Scalability: The hierarchical approach al-
lows for structured classification by breaking down the
problem into smaller, more manageable subproblems.

• Higher Accuracy: By focusing on groups of appli-
cations within known server IP ranges, the model
improves prediction accuracy compared to a flat clas-
sification model.

• Less Drift: The hierarchical approach is observed to
suffer less performance degradation over time.

• Reduced Computational Complexity: Compact sub-
models decrease overall model complexity, improving
both training efficiency and inference speed.

• Enhanced Maintainability: When applications or net-
work behaviors change over time, only specific sub-
models require updating.

The evaluation results demonstrate that the hierarchical
model consistently outperforms traditional flat classifiers,
particularly in handling evolving traffic patterns. Even under
significant concept drift, our model maintains robust classifi-
cation performance, with an F1 score remaining above 90%
even after two months. Additionally, we observed that reduc-
ing the packet restriction negatively impacts performance,
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though hierarchical classification mitigates this effect better
than flat models.

One key insight from our experiments is that Random
Forest models performed comparably to deep LSTM-based
approaches while being more computationally efficient. This
suggests that complex sequence-based models may not al-
ways be necessary for encrypted traffic classification.

Looking ahead, there are several directions still open for
future research:

• Refining Hierarchical Grouping: Exploring more
granular grouping methods, such as dynamically clus-
tering applications based on real-time traffic patterns,
that may further improve classification accuracy and
adaptability.

• Selective Retraining Strategies: Implementing adap-
tive learning techniques, which selectively retrain only
the submodels experiencing drift, could reduce the
computational cost of model updates while maintaining
performance.

• Generalization Across Networks: Evaluating the
model’s applicability across different geographic re-
gions and network environments to ensure its robust-
ness in diverse real-world scenarios.

• Adaptive Packet Processing: Investigate dynamic
models that determine the optimal number of packets
for classification in real-time. By enabling early stop-
ping after 10 packets in some cases while utilizing up
to 50 in others, one could optimize the tradeoff between
classification accuracy and inference efficiency.

Our findings highlight the usefulness of considered lever-
aging of structured domain knowledge, in contrast to blindly
applying machine learning tools to input data. One may
speculate as to the generality of this result is, and in which
other cases such techniques may be advisable.
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