- 6 -

	[image: image1.png]

	INTERNATIONAL TELECOMMUNICATION UNION
	

	
	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001-2004
	February 2004

	
	
	English only

Original: English

	Question:
	5/13
	

	STUDY GROUP 13 – CONTRIBUTION 33

	Source:
	Rapporteur for Question 5/13

	Title:
	Implementor’s Guide for Y.tdmpls

	ITU-T Recommendation Y.IMPtdmpls

Implementor’s Guide for TDM-MPLS network interworking

	Summary

This ITU-T Implementor’s Guide contains information for implementors of TDM-MPLS interworking, to be read in conjunction with Recommendation Y.tdmpls.

	Keywords

TDM, MPLS, Interworking, Network

Implementors' Guide for ITU-T Recommendation Y.tdmpls

Revision 1.0

1
Introduction

This document contains information for implementors of TDM-MPLS interworking, to be read in conjunction with the Recommendation itself.

1.1
References

[1]
ITU-T Recommendation Y.tdmpls (xx/04) – TDM-MPLS network interworking - User plane interworking
1.2
Background

This guide is intended to be a valuable source of information for implementors of TDM-MPLS interworking, to be read in conjunction with the Recommendation itself.

1.3
Scope of the guide

This guide offers guidance to implementors on the following subjects:

· Use of sequence number processing for detection of lost and misordered packets

· Adaptive clock recovery mechanisms

· Packet loss concealment mechanisms for voice channels

1.4
Document history

	Revision
	Date
	Summary

	1.0
	February 2004
	Initial version

	
	
	

2
Use of sequence number processing for detection of lost and misordered packets

The explanation of sequence number processing in clause 8.3.4.2 is limited to explanation of the setting of the expected sequence number, and does not explain how lost or misordered packets are actually detected, nor how data is placed into the jitter buffer. Here we give pseudocode for an example algorithm in order to clarify the issues involved. These issues are implementation specific and no single explanation can capture all the possibilities. In particular the jitter buffer may be packet or TDM oriented, and the filler data may be generated upon initial detection of a missing packet or upon playout.

External Variables:

 received = sequence number of packet received

 played = sequence number of the packet being played out (see Note 1)

 playout-buffer-over-run = boolean indication as to whether

 the playout buffer is full (see Note 3)

 playout-buffer-under-run = boolean indication as to whether

 the playout buffer has been exhausted (see note 3)

Local Variables:

 expected = sequence number we expect to receive next

 D = difference between expected and received sequence numbers (see Note 2)

 Note: this number is always in the range -2^15 ... +2^15 - 1

 L = difference between sequence numbers of packet being played out

 and that just received (See Notes 1 and 2)

Parameter

 R = maximum lateness of packet recoverable (see Note 1)

Note 1: this is only required for the optional re-ordering

Note 2: this number is always in the range -2^15 ... +2^15 - 1

Note 3: the playout buffer is emptied by the TDM playout process,

 which runs asynchronously to the packet arrival processing, and which is not herein specified

Upon receipt of a packet

 if received = expected

 { treat packet as in-order }

 if not playout-buffer-over-run

 place packet contents into playout buffer

 else

 discard packet contents

 set expected = (received + 1) mod 2^16

 else

 calculate D = ((expected-received) mod 2^16) - 2^15

 if D > 0 then

 { packets expected, expected+1, ... received-1 are lost }

 while not playout-buffer-over-run

 place filler data (all-ones or interpolation) into playout buffer

 if not playout-buffer-over-run

 place packet contents into playout buffer

 else

 discard packet contents

 set expected = (received + 1) mod 2^16

 else { late packet arrived }

 declare "received" to be a late packet

 do NOT update "expected"

 either

 discard packet

 or

 if not playout-buffer-under-run

 calculate L = ((played-received) mod 2^16) - 2^15

 if 0 < L <= R

 replace packet previously marked as lost with actual data

 else

 discard packet

Note: by choosing R=0 we always discard the late packet

In order to simplify the description the proposed text replaces ad-hoc treatment of the cyclicity with consistent use of modulo arithmetic. All differences between indexes are explicitly converted to the range [–215 ... +215 – 1] to ensure that simple checking of the difference’s sign correctly predicts the packet arrival order.

We introduce the notion of a playout buffer in order to unambiguously define packet lateness. When a packet arrives after having previously been assume to have been lost, the egress IWF may discard it, and continue to treat it as lost. Alternatively if the filler data that had been inserted in its place has not yet been played out, the option remains to insert the true data into the playout buffer. This description is stated in terms of a packet-oriented playout buffer rather than a TDM byte oriented one; however this is not a true requirement for re-ordering implementations since the latter could be used along with pointers to packet commencement points.

Having introduced the playout buffer we explicitly treat over-run and under-run of this buffer. Over-run occurs when packets arrive so quickly that they can not be stored for playout. This is usually an indication of gross timing inaccuracy or misconfiguration, and we can do little but discard such early packets. Under-run is usually a sign of network starvation, resulting from congestion or network failure.

3.
Adaptive Clock Recovery Mechanisms

When transporting TDM over MPLS we are required to overcome the random packet delay variaton and to output the TDM at egress at a constant rate. This may be accomplished by using a jitter buffer, which is a block of memory into which the data from the PSN is written at a variable rate, and data is read out and sent to the destination TDM equipment at a constant rate. In this way we have almost completely hidden the fact that a PSN was traversed rather than a conventional synchronous TDM network. One vestige of the change is the added latency due to the jitter buffer. Customary practice is to operate with the jitter buffer approximately half full, thus minimizing the probability of its overflow or underflow. Hence the additional delay is half the jitter buffer size.

The IWF empties the jitter buffer and outputs TDM at a rate dictated by a local clock, which should ideally have precisely the same frequency as the source clock. Unfortunately, the MPLS network does not provide a physical layer clock as do true TDM systems and the original time reference information has been lost. When adaptive clock recovery is performed the sender's original clock is recovered based only on observable characteristics of the packets arriving through the PSN. These characteristics may consist of the precise time of arrival of the packet to the destination, the fill-level of the jitter buffer as a function of time, and explicitly transmitted timestamps.

Consider that the source TDM device is producing bits at a constant rate determined by its clock. Unfortunately we receive these bits in packets that suffer random delays, but these random delays can be considered to consist of two contributions. The first is simply the average propagation delay present in any physical network, and does not obstruct our quest for clock recovery. The latter is a truly random PDV that we can consider to be a zero mean random process. Within this framework the task of clock recovery can be seen to be a kind of `averaging' process that negates the effect of the random PDV and captures the average rate of transmission of the original bit stream. A phase locked loop (PLL) is well suited for this task because it can "lock" onto the average bit rate, regenerating a clean clock signal that approximates the original bit rate.

A conventional means of adaptive clock recovery is based on adapting a local clock based on the level of the receiver's jitter-buffer. To understand the operation of the conventional mechanism let us assume for the moment that there is no PDV but that the local clock is initially lower in frequency than the source clock. The writing into the jitter buffer occurs faster than it is emptied and thus the fill-level starts to rise. The conventional mechanism defines zones around the buffer center, and each zone is interpreted as a frequency offset with respect to the nominal local clock. When the jitter buffer level reaches a zone the local clock is set to the frequency defined by that zone. If this frequency now matches the source clock, the jitter buffer level will now remain constant since the filling and emptying are proceeding at the same rate, but if the local clock is still lower in frequency the level will continue to rise until it enters the next zone. Once the level is in the next higher zone the local clock is set to a yet higher frequency, and the process continues until the local clock precisely matches the source clock. Note that a control loop has been implemented, whereby the fill-level of the jitter buffer instigates change in the local clock frequency, and this clock frequency directly influences the position of the level.

When there is PDV in addition to clock discrepancy, the jitter buffer level no longer smoothly rises or falls, but rather wildly fluctuates about its average level. Were this average level to be identified we could proceed as before, and we could find it by proper low-pass filtering of the noisy instantaneous level. Thus in the realistic case where there is both PDV and frequency discrepancy, the control loop consists of monitoring the jitter buffer level, filtering this level to obtain the average level, setting the local clock based on this average level, and then monitoring the effect this has on the level. In technical terms the conventional mechanism consists of a PLL, which observing the sequence of level positions, locks onto the average rate and dictates this rate to the local clock that controls the rate at which data is read out of the jitter buffer. In this way any initial frequency discrepancy between the source and destination clocks is eventually compensated, and the receiver's jitter-buffer will settle on the level corresponding to precise frequency alignment between the two clocks.

An alternative to a PLL based on the jitter buffer level is the frequency lock loop (FLL) based on the packet arrival times. The FLL locks onto the source clocks frequency, forcing frequency differences to zero, without considering the clock phases. Hence an FLL is in lock when the frequency difference is zero, although arbitrary time offsets may remain. Advantages of the FLL are its ability to quickly remove frequency difference, and to retain low frequency wander, its disadvantage is that it can not control the jitter buffer level, and thus does not guard against buffer underflow or overflow.

4.
Packet Loss Concealment

There are several sources of packet loss in packet switched networks. Packets are discarded upon detection of bit errors, but with modern fibre optic technology such errors are rare in core networks. Routers must drop packets when congested, and may do so when they sense congestion is imminent. Real-time streams may have an additional source of packet loss, namely rejection of a packet that has successfully arrived at the destination, but has been overly delayed. Non-real-time data communications are not overly effected by packet loss, due to the possibility of retransmission; but real-time constraints usually prohibit retransmission, and hence packet loss leads to noticeable quality degradation.

When the TDM is carrying voice channels, use of arbitrary filler data can cause in gaps or artifacts that result in choppy, annoying or even unintelligible speech. An implementation may blindly insert a preconfigured constant value in place of any lost speech samples, and this value should be chosen to minimize the perceptual effect. Since we can assume that the input signal is zero-mean (i.e. contains no DC component) minimal distortion is attained when this constant is chosen to be zero. This is in fact precisely what happens when a G.711 mu-law codec receives a word containing all-ones, as would be the case if AIS were to be received (but unfortunately is not the case for A-law).

A slightly more sophisticated technique is to replace the missing sample with the previous one. This method is justifiable in the VoIP case where the quasistationarity of the speech signal means that the missing buffer is expected to be similar to the previous one. Even in the single sample case it is decidedly better than replacement by zero due to the typical low-pass characteristic of speech signals, and to the fact that during intervals with significant high frequency content (e.g. fricatives) the error is less noticeable.

We may declare a packet lost following the reception of the following packet. Hence when loss needs to be concealed, both the sample prior to the missing one, and that following it can be assumed to be available. This enables us to estimate the missing sample value by interpolation, the simplest type of which is linear interpolation, whereby the missing sample is replaced by the average of the two surrounding values. More complex interpolation, such as quadratic interpolation or splines can be used as well, but for the purposes of this analysis we will restrict ourselves to the linear case.

More sophisticated methods of packet concealment are based on model-based prediction. Standardized speech compression algorithms have had integral packet loss concealment methods for some time, and more recently a packet loss concealment method for uncompressed speech has been standardized in G.711 Appendix 1. However, these methods estimate a large number of voice samples (e.g. 80 samples corresponding to 10 milliseconds) based on the previous packet, while for TDM-MPLS interworking we need only to estimate the value of a single missing sample (or more generally a small number of missing samples), based on previous and following samples. An interpolation model based on second order statistics of the previous N samples, such as STatistically Enhanced Interpolation may be used for this purpose.

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.

