

## TDMoIP Updates

PWE3 – 53<sup>rd</sup> IETF

21 March 2002

Yaakov (J) Stein

TDMoIP Slide 1



# What's new in the TDMoIP draft (version 03)?

- Edited to conform with PWE concepts/terminology
  - Elimination of motivational text
  - Added applicability statement
  - Layering made explicit
  - Isolation of PSN-dependent details
- Control word format update
- $\bullet$  Explicit treatment of MPLS / L2TPv3 / L2Eth
- New OAM/IPPM section added



higher layers

## **TDMoIP layering structure**

|   | PSN / multiplexing<br>RTP header when need timing<br>TDMoIP Encapsulation |      |      |  |  |  |
|---|---------------------------------------------------------------------------|------|------|--|--|--|
|   |                                                                           |      |      |  |  |  |
| 7 |                                                                           |      |      |  |  |  |
|   | AAL1                                                                      | AAL2 | HDLC |  |  |  |

AAL1 used for preconfigured setup

AAL2 used for *dynamic bandwidth* 

HDLC used for CCS signaling



### **AAL1 for structured TDM**

### As discussed in the previous meeting

### "AAL1" is the simplest method to robustly transport structured TDM (voice, sync, signaling)

#### **ATM community has done the debugging for us!**

Any alternative will either

- Fall apart upon packet loss or
- Be less efficient (e.g. require payload duplication) or
- Mandate high latency (e.g. multiframe per packet) or
- Require PE to understand TDM intricacies or
- Be essentially equivalent (I.e. contain a structure pointer)



### **AAL2 for Dynamic BW**

## AAL1 is BW inefficient when timeslots are dynamic

Even with GB rates we should consider efficiency considerations

## "AAL2" is the simplest method to robustly transport dynamic structured TDM

Any alternative will either

- Fall apart upon packet loss
  or
- Be less efficient (e.g. require renegotiation) or
- Require PE to understand TDM intricacies or
- Be essentially equivalent



### Unified Approach to TDM PW

| PSN / | multip | lexing |
|-------|--------|--------|
|-------|--------|--------|

RTP header when need timing

| FORMID TDMoIP Encapsulation |      |      |               |      |  |  |  |  |
|-----------------------------|------|------|---------------|------|--|--|--|--|
| Raw<br>frames               | AAL1 | AAL2 | SONET/<br>SDH | HDLC |  |  |  |  |

#### Similar to "profiles" in some VoX protocols



### The problem is the motivation

| Raw<br>frames | AAL1 | AAL2 | SONET/<br>SDH | HDLC |
|---------------|------|------|---------------|------|
|---------------|------|------|---------------|------|

Why so many different payload formats to transport TDM ?

### **Division of application space**

AAL1/2 for low speed, SONET/SDH for high-speed How justify raw frames except for simple implementation

### **Service Interworking**

**Obvious when interfacing to AAL/SONET networks but which should be used for simple TDM?** 



### **Proposed Solution**

- MUST use SONET/SDH for high rate
- For low rate (E3/T3 and below) :
  - MUST use raw frames for unstructured
  - MUST use AAL1 for structured / static timeslot with CAS
  - MUST use AAL2 when dynamic timeslot allocation required
  - MAY use either raw or AAL1 for structured w/o CAS