- 3 -

COM 13 – D 464 – E

	[image: image1.png]

	INTERNATIONAL TELECOMMUNICATION UNION
	COM 13 – D 464 – E

	
	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001-2004
	

	
	
	English only

Original: English

	Question(s):
	5/13
	Geneva, 3-12 February 2004

	STUDY GROUP 13 – DELAYED CONTRIBUTION 464

	Source:
	RAD Data Communications

	Title:
	Sequence Number Processing for Y.tdmpls

Abstract

We present a complete algorithm for processing of sequence numbers, including detection and compensation for lost packets, detection of mis-ordering and optional re-ordering. The cyclic nature of the sequence number space is specifically taken into account.

Discussion

The previous version of Y.tdmpls (see TD_33_WP2 from the 21 July – 1 August Geneva meeting) had a sequence number processing algorithm in clause 7.1.3.3.2 that had been borrowed from Y.1411, Y.1412, X.84, etc. The sole modification was due to Y.tdmpls not reserving the zero sequence number to indicate that sequencing was not being used (since sequencing is a mandatory feature for TDM-MPLS interworking).

We present that algorithm here for reference:

7.1.3.3.2 Processing the Sequence Numbers

The following procedures shall be used.

· If the sequence number >= the expected sequence number and the sequence number - the expected sequence number < 32768, then the received packet is considered to be in order.

· Otherwise, if the sequence number < the expected sequence number and the expected sequence number - the sequence number >= 32768, then the received packet is considered to be in order.

· Otherwise, the received packet is out of order.

· If the received packet is in order, then the expected sequence number = the sequence number +1 mod 216
· If the expected sequence number = 0, then the expected sequence number = 1

Note: The expected initial sequence number may be unknown, and is to be inferred from the first received packet.
At the November 2003 Rapporteur’s meeting in Geneva it was noticed that this sequence number processing algorithm only addresses the problem of re-ordering mis-ordered packets. Yet clause 6.1 item j of the Y.tdmpls user plane requirements specifically states that packet loss must be reliably detected for TDM-MPLS interworking. Indeed, packet loss detection and compensation is critical for retention of proper TDM timing, while re-ordering is nonessential as late packets can be always be discarded and treated as lost (although this may accrue a performance degradation).

In addition, the conventional statement of the sequence number processing algorithm is overly complex and difficult to understand due to not explicitly using cyclic (modulo) arithmetic. The embedding of inequality symbols, minus signs, etc also does little to aid comprehension.

Hence it was clear that the conventional algorithm needed to be replaced for Y.tdmpls. Due to time constraints no attempt was made at specifying a precise algorithm, rather an editor’s note was inserted stating the requirements from such an algorithm and requesting contributions.

The present contribution includes an appendix with pseudocode for this clause (now numbered 7.3.4.2).

In order to simplify the description the proposed text replaces ad-hoc treatment of the cyclicity with consistent use of modulo arithmetic. All differences between indexes are explicitly converted to the range [–215 ... +215 – 1] to ensure that simple checking of the difference’s sign correctly predicts the packet arrival order.

We introduce the notion of a playout buffer in order to unambiguously define packet lateness. When a packet arrives after having previously been assume to have been lost, the egress IWF may discard it, and continue to treat it as lost. Alternatively if the filler data that had been inserted in its place has not yet been played out, the option remains to insert the true data into the playout buffer. This description is stated in terms of a packet-oriented playout buffer rather than a TDM byte oriented one; however this is not a true requirement for re-ordering implementations since the latter could be used along with pointers to packet commencement points.

Having introduced the playout buffer we explicitly treat over-run and under-run of this buffer. Over-run occurs when packets arrive so quickly that they can not be stored for playout. This is usually an indication of gross timing inaccuracy or misconfiguration, and we can do little but discard such early packets. Under-run is usually a sign of network starvation, resulting from congestion or network failure.

Proposal

It is proposed that the pseudocode be either inserted into clause 7.3.4.2, or (if considered to detailed) referenced there and placed in the implementor’s guide.

Appendix: Pseudocode for Y.tdmpls sequence number processing algorithm

External Variables:

 received = sequence number of packet received

 played = sequence number of the packet being played out (see Note 1)

 playout-buffer-over-run = boolean indication as to whether

 the playout buffer is full (see Note 3)

 playout-buffer-under-run = boolean indication as to whether

 the playout buffer has been exhausted (see note 3)

Local Variables

 expected = sequence number we expect to receive next

 D = difference between expected and received sequence numbers (see Note 2)

 Note: this number is always in the range -2^15 ... +2^15 - 1

 L = difference between sequence numbers of packet being played out

 and that just received (See Notes 1 and 2)

Parameter

 R = maximum lateness of packet recoverable (see Note 1)

Note 1: this is only required for the optional re-ordering

Note 2: this number is always in the range -2^15 ... +2^15 - 1

Note 3: the playout buffer is emptied by the TDM playout process,

 which runs asynchronously to the packet arrival processing, and which is not herein specified

Upon receipt of a packet

 if received = expected

 { treat packet as in-order }

 if not playout-buffer-over-run

 place packet contents into playout buffer

 else

 discard packet contents

 set expected = (received + 1) mod 2^16

 else

 calculate D = ((expected-received) mod 2^16) - 2^15

 if D > 0 then

 { packets expected, expected+1, ... received-1 are lost }

 while not playout-buffer-over-run

 place filler data (all-ones or interpolation) into playout buffer

 if not playout-buffer-over-run

 place packet contents into playout buffer

 else

 discard packet contents

 set expected = (received + 1) mod 2^16

 else { late packet arrived }

 declare "received" to be a late packet

 do NOT update "expected"

 either

 discard packet

 or

 if not playout-buffer-under-run

 calculate L = ((played-received) mod 2^16) - 2^15

 if 0 < L <= R

 replace packet previously marked as lost with actual data

 else

 discard packet

Note: by choosing R=0 we always discard the late packet

	Contact:
	Yaakov (J) Stein

RAD Data Communications

Israel
	Tel: +972 3 645 5389

Fax: +972 3 647 5924

Email: Yaakov_S@rad.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.

