- 4 -

COM 13 – D 389 – E

	[image: image1.png]

	INTERNATIONAL TELECOMMUNICATION UNION
	COM 13 – D 389

	
	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2001-2004
	(WP 2/13)

	
	
	English only

	Question(s):
	5/13
	Geneva, 21 July - 1 August 2003

	STUDY GROUP 13 – DELAYED CONTRIBUTION 389

	Source:
	RAD Data Communications

	Title:
	The Insufficiency of RTP for TDM Clock Recovery

ABSTRACT

RTP, the IETF's real-time protocol, has been suggested as a basis for clock recovery for protocols that transport TDM over IP or MPLS networks. In this contribution, we show that RTP is insufficient for this purpose, and simply presents unnecessary overhead.

RTP for TDM-MPLS and TDM-IP Interworking

RTP, the IETF's real time protocol, is universally used for VoIP applications, and provides an excellent solution to two of VoIP's problems, namely enabling constant rate playback of non-constant bit-rate (e.g. compressed voice) signals, and absolute time synchronization of distinct real-time streams (e.g. for combining multiple speakers in conference calls). Neither of these features is required for TDM transport over packet switched networks.

RTP was developed for UDP/IP networks, but it has recently been suggested for MPLS networks as well. In the IP case it usually sits after the UDP header; hence for TDM-IP interworking its apparently natural place is between the UDP header and the common interworking indicators, and for TDM-MPLS between the interworking label and the indicators. However, this implies that the pseudowire (i.e. the common interworking indicators and payload) is an RTP payload, rather than making RTP an (optional) feature of the pseudowire. Being an RTP payload implies conforming to a number of criteria defined in IETF documents, criteria which are not presently being considered for MPLS interworking. In order to make RTP ancillary to the interworking mechanisms it would seem more fitting to place the RTP header after the common interworking indicators, but this suggestion was not accepted by the IETF PWE3 working group.

The RTP header is large (at least 12 bytes) and so adds significant overhead to the packet. Although the header contains other fields, proposals to use RTP in TDM over packet switched network protocols have exploited only the four-byte timestamp, and the two-byte sequence number.

The RTP sequence number is redundant as there already is a sequence number in the common interworking indicators. Suggestions to equate the two immediately run into problems. The RTP sequence number cycles through all possible unsigned 16 bit numbers, while the common interworking indicator sequence number avoids the value zero. Hence it is not possible to keep the two sequence numbers in synchronization, and an RTP-enabled interworking system will need to maintain two different sequence numbers.

The RTP Timestamp

The RTP timestamp is a four byte field that represents the time that the network ingress transport layer protocol receives the first octet of its payload. Layer 4 at the network egress receives this timestamp, and can use it to reproduce timing information in order to properly play out the real-time payload. The timestamp is required to overcome variability of the received data rate, due to inherent variability of the source (for VBR traffic), packet delay variation in the network, and inherent indeterminism in the lower layers of the ingress and egress.

The last of the above timing degradations is due in practice to processing delays of layers 4 and below in both ingress and egress IWFs. These processing delays are in general variable due to software threads and to contention between multiple real-time flows. It is in principle possible to eliminate the local degradation at ingress by using a hardware timestamp rather than one supplied by software upon discovering the incoming octet, and similarly to utilize special purpose hardware at egress which ensures proper physical layer playback. However, RTP is usually implemented entirely in software, and such direct physical layer control would be incompatible with RTP's layering. Lower layer timestamping techniques would avoid this problem.

The standard RTP timestamp is 32 bits, and represents time ticks at some basic frequency. The frequency being recommended for TDM applications is 8 kHz, so that each tick represents 125 sec. This is a reasonable resolution for audio-quality timing reconstruction of a single voice-grade channel. For an E1 link (for which 1 UI = 488 nsec) it corresponds to 256 UI, and so a priori does not seem to offer anywhere near adequate resolution. A much better alternative would be to use NTP's standard 32 bit representation, with 16 bits of whole seconds, and 16 bits of fractional seconds. In that case the resolution would be 15.3 sec or about 32 UI for an E1 link.

There are three distinct scenarios for setting this timestamp. In the first scenario the timestamp is relative to a clock locked to the source TDM clock. Since the TDM clock is assumed to be of high quality this timestamp is inherently accurate. However, since this same clock governs the TDM generation and thus directly dictates the time between filling of TDM packets, such a timestamp is linear in the packet sequence number, and adds no additional substantive information. In fact, were we to use payloads containing single TDM frames, the timestamp would precisely equal the sequence number. Since a sequence number is available in the common interworking indicators, in such a case the entire RTP header is without useful content.

In the second case the timestamp is determined based on a second clock, unrelated to the TDM clock, and unrelated to any clock available at the egress IWF. Finally, in the third case the timestamp is governed by a clock unrelated to the TDM clock, but available at the egress. Of these three cases, the third is obviously the better. It is unclear that the introduction of an independent clock not available at the egress, and potentially less accurate than the TDM clock, could improve timing recovery. The use of a common clock can be helpful (see the next paragraph), but it is not clear how this common clock is delivered. It is not possible to use the network's physical layer to distribute clock signals in general MPLS networks; and if we have a single hop link, then it would be better to lock its physical layer to the source TDM clock and eliminate the entire problem! Alternatively, those who propose using such a common clock may be suggesting that in addition to the MPLS traffic network, a TDM network be deployed solely for clock distribution. Such a scenario would probably not be very prevalent.

Use of a common clock is a well-known mechanism for TDM clock distribution, e.g. SRTS. The Synchronous Residual Time Stamp mechanism was defined for ATM networks, which (unlike IP and MPLS networks) define the physical layer. ATM networks have a physical layer clock upon which both ends of the link agree, and SRTS encodes the ratio between the source TDM clock and this ATM physical layer clock. The receiver, having access to the ATM clock, can then easily reconstruct the required TDM clock by applying the SRTS ratios. While philosophically similar, there are two significant differences between SRTS and use of RTP timestamps with a common clock. First, SRTS uses a sophisticated scheme to reduce overhead to the point where it is effectively negligible. Second, SRTS is based on the ATM service clock of 155.52 MHz, which translates to 0.01 UI for E1 links.

In order to gauge the efficacy of the common clock scenario, we will first briefly review how standard frequency lock loop (FLL) theory can be used for TDM-MPLS clock recovery.

Use of Standard FLL for TDM-MPLS Clock Recovery

We will assume that a TDM source generates data at a constant bit rate according to its own clock. The TDM-MPLS IWF then sends constant size packets through the network. The egress IWF employs a local clock (which it uses to sends its TDM packets back through the network), and in terms of this local clock it expects to see TDM packet n arrive at time ln , but they actually arrive at times which we shall denote an .

To use the standard FLL mechanism one defines the difference n = ln - an , which can be considered to consist of two parts, one part due to the momentary frequency discrepancy between the source TDM clock and the local clock, and one due to packet delay variation. Were the local clock frequency to be precisely equal to the source clock, the difference would have zero expectation < n > = 0. In the presence of frequency discrepancy, the FLL control loop changes ln in such a way as to drive the expectation to zero. Once this occurs we say that frequency lock has been reached.

Until now we have neglected quantization error. In our computations, both ln and an are represented by a finite number of bits, so that we actually use noisy versions. We can write ln = Ln + ln and an = An - an , where ln and an are uniform noise processes with zero expectation, i.e. -1/2 u < ln < +1/2 u and -1/2 u < an < +1/2 u , where u is the UI of the local clock. As is well known the variance (power) of these signals is given by 2/3 u 2 .

The difference signal used in the FLL computation can now be written

 n = ln - an = Ln - An + ln + an = n + ln + an

where n is the true timing difference which needs to be forced to zero.
The characteristics of the FLL behavior, including attaining the required jitter and wander attenuation levels, are governed by the SNR at its input. This SNR is easily seen to be

 SNR = n 2 / (2/3 u 2 + 2/3 u 2) = 3/4 n 2 / u 2

and this SNR can be improved by increasing the frequency of the local clock (thus decreasing u). The only constraints on improving SNR are practical ones, deriving from how high a local clock frequency can be used.

Use of RTP Timestamps for TDM-MPLS Clock Recovery
We can now perform a similar calculation for this case. Timestamping methods utilize source and destination timestamps, so we now use the arrival times as measured by the common clock cn , the arrival times as measured by the local clock an , and the RTP timestamp rn . The difference rn - cn consists of two parts, the average propagation delay through the network p, and the packet delay variation. By use of an averaging process we directly obtain the average propagation delay p . The difference n' = rn - an consists of three parts, the above two plus the desired frequency discrepancy between the TDM clocks. By subtracting the average propagation delay already found n = n' - p we return to the previous case, where the difference obeys < n > = 0. In the presence of frequency discrepancy, the control loop changes the local clock in such a way as to drive the expectation to zero. Once this occurs we say that frequency lock has been reached.

The computation proceeds on roughly the same lines as before, only now the RTP timestamp quantization error depends on the common clock resolution U , and not the local clock one u. For resolutions such as have been suggested, U >> u and so

 SNR = n 2 / (2/3 U 2 + 2/3 u 2)  3/2 n 2 / U 2

And only when U is of the same order of magnitude as the local clock UI does the SNR return to the previous order of magnitude.

One may object that the above calculation is too specific, but the result is actually quite insensitive to the details of the timestamp handling. For example, one may object that the problem arises from using the difference between the two timestamps, and decide to prefilter the timestamps in order to reduce the quantization error. It is easy to see that this does not alter our results since the supposed improvement should not be lost by applying the same filter the local timestamps. But then, by linearity of the filter, the difference between the filtered timestamps is actually the filtered version of the timestamp difference, and we return to the same result. One may decide to perform a nonlinear operation on the timestamps, for example one could perform linear regression to directly determine frequency from the slope. But the squaring process therein employed actually doubles the quantization error.

In the above calculation we did not subtract the average network delay from the difference rn - cn , to obtain the instantaneous PDV. Direct use of the PDV can improve the computation as compared to methods that must average the PDV out. However, this is not due to the RTP per se, but rather due to the very existence of a common clock. As we have mentioned before, if a common clock distribution mechanism exists there are better ways of using it than RTP timestamps. Even so, there is a trade-off between the quantization noise and the PDV noise. For high PDV networks with high-frequency RTP clocks the PDV is the dominant error term, while for low PDV and low-frequency RTP clocks the quantization error is the major factor.

Proposal

It is proposed that RTP not be used for Y.tdmpls.

	Contact:
	Yaakov (Jonathan) Stein

RAD Data Communications

ISRAEL
	Tel:
+972 3 645-5389

Fax:
+972 3 647 5924

Email:
Yaakov_S@rad.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.

ITU-T\COM-T\COM13\D\389E.DOC

ITU-T\COM-T\COM13\D\389E.DOC

