How to convert between different filter representations | $to \rightarrow$ from \downarrow | a, b
coefficients | α,β
coefficients | impulse
response | frequency
response | transfer
function | gain and
pole-zero
diagram | |------------------------------------|---------------------------------------|---------------------------------|------------------------------------|------------------------------------|---|----------------------------------| | a, b
coefficients | identity | subtraction of y terms | MA: h=a
AR + ARMA:
recursion | substitute
x=e ^{ikn} | write using z ⁻¹ and extract | through
transfer
function | | α,β
coefficients | addition of y
terms | identity | same as a,b | same as a,b | same as a,b | same as a,b | | impulse
response | MA: a=h
ARMA:
recursion | through a,b | identity | DFT | zT | through
transfer
function | | frequency
response | through IR or
transfer
function | same as a,b | iDFT | identity | analytic
continuation | through
transfer
function | | transfer
function | through α , β | B(z) Y(z)
=
A(z) X(z) | izT | substitute
z = e ^{i ω} | identity | find roots | | gain and
pole-zero
diagram | through
transfer
function | through
transfer
function | through
transfer
function | substitution | multiply
terms to get
polynomial | identity |