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Abstract

We present a variant of back propagation, which trains faster, gets caught in local minima less
frequently, generalizes better for a given amount of training, and is specifically adapted to pattern
recognition problems. We demonstrate our claims by simulations of an archetypal classification task.

1 Introduction

To date, the semilinear feedforward network, trained by back propagation (BP) [22] or by one of its
many variants, has been the most popular neural network paradigm in applications. There are several
justifications for this :

• these networks can be shown to be universal approximators [9, 10],

• when used as a black box replacements for classical pattern classifiers, their performance is close
to optimal [20, 30]

• the operation of these networks (as distinct from the training) is relatively fast (no stabilization
time is required as in Boltzmann machines or Hopfield networks),

• the memory required to store the network is relatively small (as compared with nearest neighbor,
hypersphere, or basis function methods),

• BP provides an easily implemented, fully automatic, supervised training algorithm.

There are, however, several disadvantages to the scheme :

• the false alarm rate (ie. the probability that the classifier outputs a valid response when presented
an input not corresponding to any of the desired classes) is usually high,

• the architecture (number of layers, number of neurons per layer) must be prespecified, and, at
present, there is no general prescription for doing so,

• there is no convergence theorem for networks with hidden layers and the BP algorithm can get
caught in poor local minima of the cost function,

• the learning problem is computationally expensive [13] and in practice the training time does not
scale up well with the number of input units and patterns.

The high false alarm rate is a fundamental weakness of hyperplane classifiers (as opposed to nearest
neighbor or distance based ones) and may be lowered by properly combining the outputs of several
different networks [2]. The unknown architecture problem may be eliminated by adopting alternative
training algorithms which dynamically vary the architecture (eg. [3, 8, 18]). The disadvantages of
the learning algorithm may be ameliorated by many proposed alternatives to the BP philosophy,
which explicitly search for internal representations [6], utilize nonlinear optimization techniques [29],
linear [25], quadratic [11] or dynamic [24] programming, or even methods for solving stiff ODEs [21].
However, none of these alternatives can viably replace BP in large pattern recognition applications,
being limited to a single output unit, or requiring tremendous amounts of computer memory, or being
otherwise restricted to small toy problems.

Once turning (perhaps reluctantly) to the BP algorithm as the only practical solution, we are
immediately struck by its sluggishness. Small toy problems often converge only after ridiculously large
numbers of cycles through the entire training set (see eg. [23]), and even then the generalization
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on the test set may be unacceptably poor. Many variations on the basic BP theme have thus been
introduced, such as including second order terms [4, 19], empirically changing the weight updating rules
[1, 7], individually optimizing each weight’s learning rate [12], reducing the number of independent
variables [15, 16], using alternative cost functions [14, 26], and so forth [1, 28].

While working on several large pattern recognition applications in a small computer environment,
we have developed a BP variant which seems to be widely applicable, much faster than standard BP,
conservative in memory, less prone to being caught in unfavorable minima, and which appears to
provide superior generalization. The algorithm incorporates three main features and will be described
in section 3. Before the description we explain the use of a feedforward network as a pattern classifier,
and following it we present the results of simulations justifying our claims.

2 Feedforward Networks for Pattern Recognition Problems

Although feedforward networks are general function approximators, one of the main reasons for their
popularity is the facility with which they can be employed as pattern classifiers. A pattern classifier
inputs N features which may be continuous or discrete in nature, and outputs an identification linking
the input to one of M classes. We are interested in getting high correct classification rate on the training
examples (approximation), but more importantly on valid examples that are not in the training set
(generalization). When the input patterns are not from a closed set, ie. input patterns may not
correspond to any of the desired classes, we do not wish the classifier to respond to an input not
belonging to one of the classes (false alarm). Classifiers with adjustable thresholds may trade off
misidentification probability against false alarm rate.

The most common implementation of a neural network classifier consists of N input neurons, and
M outputs encoded via the so called selector representation, wherein there are M output neurons,
each trained to take be active (+1) if the input corresponds to its class and inactive (0) otherwise.
Thus the classes 1, 2, . . .M are encoded {100 · · · 0}, {010 · · · 0}, {001 · · · 0} . . . {000 · · · 1}. Neuron values
significantly deviating from 1 and 0 are attributed to confusion, and more than one neuron being active
to ambiguity. For ‘raw classification’ we simply output the index of the most active output neuron,
however one may require that activity to exceed a threshold or be significantly higher than that of
the next-runner-up. In certain applications the thermometer representation {100 · · · 0}, {110 · · · 0},
{111 · · · 0} . . . {111 · · · 1} is more natural. At times more complex output representations might make
more sense from a system engineering point of view – for example we might reserve log2 M output
neurons and use binary coded class numbers, or eg. for character recognition we might conceivably
want to directly obtain ASCII codes.

3 Algorithm Details

We preface our presentation by defining some necessary notation. All the neurons in the network are
assumed continuous and to be in the range [L . . .U ]. A neuron i in a hidden or output layer calculates
its value (activity) as

Si = g


∑

j

Jij Sj


 (1)

where the sum runs over all neurons j which feed neuron i. The activation function g is taken to
be a sigmoid curve on the appropriate range and is most popularly taken to be the solution of the
generalized logistic differential equation g′ = β

U−L (U − g)(g − L), namely

g(h) = L +
U − L

1 + e−βh
. (2)

For example, when L = 0 and U = 1 it is the Fermi function g(h) = 1
1+e−βh , while when L = −1 and

U = 1 the activation function is the hyperbolic tangent g(h) = tanh(βh).
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The desired output for the µth pattern will be designated Dµ, while the actual output is Oµ. The
pattern energy is defined to be the Euclidean distance between the desired and actual outputs

Eµ =
∑

i

(Dµ
i − Oµ

i )2 . (3)

The normal cost function or energy is the sum of all the pattern energies

E =
∑

µ

Eµ (4)

and BP simply tries to reduce E by reducing one Eµ at a time using the method of steepest descent.

3.1 Neuron Bias Removal

We first address the problem of the range of the neurons. Assuming the features to be continuous
variables, one may ask if their range is of importance. It is a simple matter to shift and contract
or expand each feature, and the difficulty of the pattern recognition problem is unchanged by such
transformations. However, it has been found that a neuron’s bias (ie the deviation of its average
value from zero) has significant influence on the convergence time of the standard BP algorithm.
Empirical results of applying BP to the XOR problem and to random problems [27] reveal that it is
most advantageous to keep the average of each neuron zero. In particular the popular choice L = 0,
U = 1 is ruled out, but the choice L = −1, U = 1 is ideal assuming symmetric distribution of values
about their expectations. Theoretical results for a single linear (g(h) = h) neuron reveal that for large
N the training time increases dramatically with input bias [17], due to an eigenvalue of the pattern
covariance matrix which scales in proportional to N . The theoretical result applies equally well to
hidden layer neurons, being inputs to the next layer. Even the output neurons are best kept unbiased,
since then small values of |g(h)| only occur where the derivative g′ is largest and the backward error
propagation is unimpeded [14].

Although our features are not always symmetrically distributed, we did not bother to determine the
exact averages. Dramatic improvement in convergence time is obtained merely by using the symmetric
range [−1 · · · + 1] for all the neurons in the network. We can not overstress the value of this simply
implemented tactic. We believe that many of the cycle number quotations found in the literature
(hundreds to thousands of cycles for small toy problems) could be radically reduced by this trick alone.

3.2 Output Compensation

We next address the output neuron representation. We will concentrate on the selector representation
defined in section 2, although the method can be easily extended to other output representations. Even
with output neurons in the symmetrized range [−1 · · · + 1] we have a bias problem, this time simply
because most of the output units are desired to be inactive (−1) for every pattern. During training
we repeatedly reinforce this tendency, since +1 outputs are scarce for large M . The output neurons
quickly learn that they should be inactive, leading to the all-inactive output as being a preferred state
(although completely illogical for a valid pattern).

To be more precise let us compare the energy of the totally inactive output state with a randomly
chosen one. The desired value of output neuron i for pattern µ is Dµ

i , and for each µ Dµ
i is +1 for

exactly one i. The totally inactive state Oµ
i = −1 has pattern energy is Eµ =

∑
i(−1−Dµ

i )2 = 4, and
thus the total energy is proportional to the number of patterns E =

∑
µ Eµ = 4P . At the beginning

of training, the Jij are random, and we expect the output neurons to be evenly distributed over the
range [−1 · · · + 1]. In this case, Eµ is proportional to the number of output units M , and E ∼ MP .
When M is sufficiently large, the inactive state’s energy is significantly lower, and the network will
tend to it.

One way to solve this problem would be to replace the selector with an alternative output repre-
sentation. We might use orthogonal vectors of ±1, or arbitrarily chosen points (perhaps in a lower
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dimensional space). This would entail saving a ‘dictionary’ translating these points to the desired
classes - perhaps implemented as another network layer. Another way would be to somehow require
at least one output neuron to be nonzero – but then invalid patterns would always evoke false alarms.
The most direct way of dealing with the problem is to properly weight the cost of the outputs, causing
the infrequent, but critical, active neurons to be more significant. We propose changing the definition
of the pattern energy to

Eµ =
∑

i

Fµ
i (Oµ

i − Dµ
i )2 (5)

and we take the ‘compensation factor’ to be

Fµ
i =

f − 1
2

Dµ
i +

f + 1
2

=
{

f Dµ
i = 1

1 Dµ
i = −1 .

If f is taken proportional to M , the pattern energy of the totally inactive state is proportional to M
and no longer dominates random outputs.

3.3 Energy Proportional Order

In this subsection we turn to the method of presenting the patterns. We assume that the weights are
updated after every pattern (pattern mode), rather than at the end of the entire cycle of all patterns
(epoch mode). In this case, the order of presenting the patterns is significant. Three tactics are
traditional – sequential order, random order (each new pattern is chosen at random), and random set
order (a random permutation of the patterns is chosen each cycle). When all examples of a class are
grouped together, sequential order is most significantly different from the other two.

All three of the above orderings blindly take patterns, without regard to how well classified the
pattern may already be, or to the reduction in energy the pattern may bring. Previous authors (eg.
[1, 5, 31]) have proposed various strategies :

• only updating the weights when the pattern energy exceeds a threshold,

• training on easy cases first and advancing to borderline cases (outliers) later on,

• stressing poorly classified patterns by replicating them in the pattern set or by increasing the
learning rate for them,

• adding additional patterns for poorly learnt classes.

We suggest a more systematic method of taking the possible improvement into account. The maximum
reduction in total energy that can be obtained while dealing with pattern µ, is its entire pattern energy
Eµ, and thus selecting input patterns with probabilty proportional to Eµ updates more frequently the
lesser well learnt patterns, which can contribute more. In practice, since E =

∑
µ Eµ, this selection

involves randomly chosing a real number between zero and E, and determining within which pattern’s
‘energy interval’ this number falls. As an additional ploy, one may chose to recalculate the entire
energy only every C cycles, thus smoothing its fluctuations in a manner similar to the momentum
term, and saving on computation time.

4 Simulations

In order to compare our algorithm with BP in a pattern classification setting, we chose an archetypal
classification problem and measured the effect of our proposed improvements with respect to training
time and generalization.

The input (feature) space is N -dimensional real space RN . We randomly chose L of the 2N corners
of the unit side hypercube (ie. L N -dimensional vectors with elements ±1

2 ) to be henceforth called
‘centers’. We now define M classes, each of which is composed of the vicinities of one or more centers.
The individual center vicinities are linearly separable, and thus a single hidden layer network with L
hidden units should certainly suffice for classification. In the simplest case, C = L and each class is
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unimodal comprising those vectors closest to a hypercube corner; in more complex cases the classes
are multimodal. For the simulations we chose either one or two centers per class.

The training set of P vectors was generated by adding random gaussian noise of width σ = 1 to the
appropriate hypercube corners. The test set contained Q vectors similarly generated but with width
σ normally taken to be very large. Since centers may be only one distance unit apart (although two
randomly chosen centers are

√
N/2 from each other) we reject vectors which are closer to another

center.
The simulations were performed with a single hidden layer network of [−1 · · ·+1] neurons. The input

dimension N , number of classes M , number of hidden units, and size of training set P were all varied
over wide ranges. After each training cycle (defined to be exactly P updates) the ‘raw classification’
performance was checked on both the training and test sets. Training normally continued at least
until 100% correct classification was achieved on the training set. The training was performed using
random order backpropagation (BP), output compensation (OC), energy proportional order (EP), or
a combination of the latter two (OCEP). The same learning rate was used for all methods and the
momentum was fixed at α = 0.5. The same initial network was used for all algorithms compared.

First let us consider the unimodal case. In all runs we noticed significant differences in the training
times. When training a network with many hidden units (for example 20 to 40), in approximately
half the cases, BP became caught in local minima, although OC and EP were never observed to do
so. When BP did converge, it did so after many more cycles than OC, EP or OCEP. In a typical case,
600 100-dimensional training patterns were taken from 10 classes and the network contained 40 hidden
units. BP had not converged after 200 cycles, Ep took 50 cycles, OC with f = 10 took 10 cycles, and
OCEP took only 7 cycles. The combined algorithm OCEP is usually an order of magnitude faster
than BP. Varying f we found a very broad minimum between f = 10 and f = 50.

For the bimodal case we found that the EP algorithm was consistently faster than BP. OC alone
was usually even faster when M was very large, but became caught in local minima for smaller M . For
example, six hundred 100-dimensional vectors were generated from 20 classes and a network with only
two hidden units was trained. After 800 cycles BP still classified only 85 % of the training set properly,
OC was similarly unable to converge, EP required 475 cycles to classify 98 %. For 1000 patterns from
200 classes, OC attained 100 % training set classification after only 12 cycles, while after 30 cycles EP
still classified only 60 % properly and BP 45 %. The combined algorithm OCEP performed 100 %
after only 8 cycles.

We compared the generalization abilities of the algorithms. For the unimodal case, when all of the
algorithms converged, the generalization depended mainly on the number of training cycles. Thus, for
a given number of cycles, although EP could be performing significantly better on the training set, the
generalization would be similar. When BP or OC became caught, this was invariably caused by one
or more classes being very poorly learnt while the others were classified well. Thus the generalization
for these unlearnt classes would be close to zero. For the bimodal case, although the EP and OCEP
algorithms required further training after 100 % training set classification in order to improve the
generalization, the final results were consistently better.

Our experience with real world applications bears out the results of the simulations, although due
to longer training times the conclusions could not be as systematically derived. In a typical case, 5000
patterns in a 400-dimensional space were used to train a network with about 10,000 weights. We found
that for identical training times, OC would generalize better than BP by 10 %, RP by 5 % and OCEP
by up to 20 %.
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