CS-661 AI Assignment 4

In the lecture the *water jug* problem was introduced. The agent is given two jugs, one holds 4 quarts and one 3 quarts. The agent can:

- fill either jug from a water supply,
- dump either jug into the drain, or
- pour from one jug into the other until either:
 - the jug being filled is full, or
 - the jug being emptied is empty.

The agent's goal is to have two quarts of water in the 4-quart jug.

Use the notation (x, y) for the state wherein there are x quarts of water in the 4-quart jug and y quarts in the 3-quart jug. In this notation (0,0) is the initial state, and (2,0) is the goal state. Use the extended notation (x, y|conditions) when we have partial information, e.g. $(x, y|x \le 4, y \le 3)$ is the most general state.

- 1. How many basic operations are there? Invent notations for each basic operation. For example, filling the 4-quart jug could be $F4 \equiv (x, y | x < 4) \Longrightarrow (4, y)$. Define each operation *exactly* (be careful with the inequalities).
- 2. Using the notation just invented, write out the shortest solution showing the states at each step.
- 3. Expand the initial state showing all states generated. What states are **not** generated?
- 4. Expand all the first level states (breadth first).
- 5. Depict (by rough drawing) breadth first and depth first search for the jug problem. Which will reach the solution first?
- 6. Can you find a useful heuristic for the water jug problem?