In section 14.2 it is shown how to multiply two \(N \)-bit numbers using \(O(N^{\log_2(3)}) \approx O(N^{1.585}) \) bitwise operations, instead of the \(N^2 \) that standard long multiplication takes. The explanation is somewhat overly concise, so here I will show all the steps.

The problem is how to multiply \(A \) times \(B \) to get \(C \). \(A \) and \(B \) are \(N \)-bit numbers, and we shall assume that \(N \) is a power of two.

The first step is to divide \(A \) into two halves, which we call the left (most significant) half \(A_L \), and the right (least significant) half \(A_R \). For example, if \(N = 8 \) and \(A = 137 \), then in bits we have \(A = 10001001 \), so that \(A_L = 1000 \) and \(A_R = 1001 \). Note that in this example \(A = A_L \text{shl} 4 + A_R \), where \(\text{shl} \) stands for the left linear shift operator, which is the same as multiplying by \(2^4 = 16, A = 16A_L + A_R \). More generally

\[
A = A_L \text{shl} \frac{N}{2} + A_R = A_L 2^{\frac{N}{2}} + A_R
\]

and similarly dividing \(B \) into two halves, leads us to

\[
B = B_L \text{shl} \frac{N}{2} + B_R = B_L 2^{\frac{N}{2}} + B_R
\]

which are the first two lines of equation 14.1.

Multiplying \(A \) times \(B \) gives

\[
C = (A_L 2^{\frac{N}{2}} + A_R) (B_L 2^{\frac{N}{2}} + B_R) = A_L B_L 2^N + (A_L B_R + A_R B_L) 2^{\frac{N}{2}} + A_R B_R
\]

which consists of 4 products of \(\frac{N}{2} \)-bit numbers, and so takes \(4 \left(\frac{N}{2} \right)^2 = N^2 \) bitwise multiplications, and so we have not gained anything. However, it is easy to convince oneself that this is the same as the expression in equation 14.1

\[
C = A_L B_L (2^N + 2^{\frac{N}{2}}) + (A_L - A_R)(B_R - B_L) 2^{\frac{N}{2}} + A_R B_R (2^{\frac{N}{2}} + 1)
\]

(it may be hard to figure out what to add and subtract to arrive at this formula, but it is easy to check).

As stated in the book, this expression for \(C \) involves only three multiplications of \(\frac{N}{2} \)-length numbers (well, actually \(A_L - A_R \) and \(B_R - B_L \) can be \(\frac{N}{2} + 1 \) bits in length, but let’s neglect that). So, since these multiplications are certainly be carried out using standard long multiplication, each takes \(\left(\frac{N}{2} \right)^2 \) bitwise multiplication operations, so that the three together require \(3 \left(\frac{N}{2} \right)^2 = \frac{3}{4} N^2 \) bitwise multiplies. This is 25% less than standard long multiplication.

Note that we are not counting the multiplications by \(2^N \) or \(2^{\frac{N}{2}} \) as these are just bit shifts, not true multiplications. Similarly, we are ignoring the addition operations.
We save 25% if we carry out the three multiplications using standard long multiplication. However, there is no reason to multiply \(A_L \) by \(B_L \) in this way, after we have learned the trick. Instead, we divide \(A_L \) into \(A_{LL} \) and \(A_{LR} \) such that \(A_L = A_{LL}2^N + A_{LR} \) and similarly for \(B_L \). We do the same for the other two products as well. This reduces the complexity by a further 25%.

Now, since we assumed that \(N \) is a power of two, we can continue dividing the parts of \(A \) and \(B \) until we get to single bits. Since we know how to multiply single bits, we are done.

How many times do we have to divide the numbers in half? Well, we started with \(N \) bits, after the first split we have numbers with \(\frac{N}{2} \) bits, after the second we are left with numbers with \(\frac{N}{4} \) bits, etc. It is easy to see that we need to do this \(\log_2 N \) times. For example, for \(N = 8 \), \(\log_2 8 = 3 \). The first division leads to 4-bit numbers, the second to 2-bit numbers, and indeed the third to 1-bit numbers.

How many bitwise multiplications are left to be performed at the end? Well, since at the \(k \)th level we have \(3^k \) multiplications, at the final \((\log_2 N) \)th level we have \(3^{\log_2 N} \) of them. All of this is made clearer in the figure.

We found that we need \(3^{\log_2 N} \) operations. It is surprising that \(3^{\log_2 N} = N^{\log_2 3} \) (didn’t you learn that in high-school?). Let’s see why. \(N \) can always be written \(2^{\log_2 N} \), so

\[
N^{\log_2 3} = 2^{(\log_2 N)(\log_2 3)} = 2^{(\log_2 3)(\log_2 N)} = 3^{\log_2 N}
\]
as promised.

So we have proven that by successively dividing the factors in two, we can reduce the complexity from $O(N^2)$ to $O(N^{\log_2(3)}) \approx O(N^{1.585})$.

However, the complexity can be further reduced by using the FFT. To see why, let’s rename the numbers we wish to multiply a and b, to emphasize that they are in a time domain representation. For example, if we wish to multiply 137 times 85, then a is the time domain sequence 10001001, and b is 01010101. We saw that to multiply these in the time domain requires a convolution, which means we need to shift a versus b and at each shift multiply the corresponding elements. This is what leads to the N^2 complexity. However, we can convert a to A (the frequency domain representation) in $N \log_2 N$ operations, and similarly b to B. The multiplication of A and B is not a convolution, but simply a bit by bit multiplication (with no carries!). This takes only N operations to perform. Finally we have to convert the resultant C in the frequency domain, back to c in the time domain, at the cost of another $N \log_2 N$ operations. Altogether we have $3O(N \log_2 N) + O(N)$ which is $O(N \log N)$.