Finding poles and zeros of a filter.

Let's start with a filter in the usual \((a_l, b_m)\) form.

\[
y_n = x_n - \frac{3}{2}x_{n-1} + \frac{1}{2}x_{n-2} - y_{n-1} - \frac{1}{2}y_{n-2}
\]

First, we create the symmetric \((\alpha_l, \beta_m)\) form by moving all the \(y\) terms to the left side.

\[
y_n + y_{n-1} + \frac{1}{2}y_{n-2} = x_n - \frac{3}{2}x_{n-1} + \frac{1}{2}x_{n-2}
\]

Next, we write this as an equation for signals (rather than an equation for values in the time domain).

\[
\left(1 + \hat{z}^{-1} + \frac{1}{2} \hat{z}^{-2}\right)y = \left(1 - \frac{3}{2} \hat{z}^{-1} + \frac{1}{2} \hat{z}^{-2}\right)x
\]

Now we take the \(z\) transform of both sides, using the fundamental theorem \(zT(\hat{z}^{-1}x) = z^{-1}zT(x)\).

\[
\left(1 + z^{-1} + \frac{1}{2} z^{-2}\right)Y(z) = \left(1 - \frac{3}{2} z^{-1} + \frac{1}{2} z^{-2}\right)X(z)
\]

This means that

\[
Y(z) = \frac{\left(1 - \frac{3}{2} z^{-1} + \frac{1}{2} z^{-2}\right)}{\left(1 + z^{-1} + \frac{1}{2} z^{-2}\right)}X(z)
\]

But \(Y(z) = H(z)X(z)\) so we have found the transfer function of this filter:

\[
H(z) = \frac{\left(1 - \frac{3}{2} z^{-1} + \frac{1}{2} z^{-2}\right)}{\left(1 + z^{-1} + \frac{1}{2} z^{-2}\right)}
\]

Multiplying top and bottom by \(z^2\) we obtain

\[
H(z) = \frac{\left(z^2 - \frac{3}{2} z + \frac{1}{2}\right)}{\left(z^2 + z + \frac{1}{2}\right)}
\]
which can be factored as follows:

\[H(z) = \frac{(z - 1)(z - \frac{1}{2})}{(z + \frac{1}{2}(1 + i))(z + \frac{1}{2}(1 - i))} \]

which is a rational function (the ratio of two polynomials in \(z \)).

The zeros of the transfer function are the roots of the polynomial in the numerator. These are easily seen to be 1 and \(\frac{1}{2} \).

The poles of the transfer function are the roots of the polynomial in the denominator. A little algebra shows that these are \(-\frac{1}{2}(1 \pm i) \).

We see that there are zeros to the left of the y axis (low frequencies), including on at DC, and there are poles to the right of the y axis (high frequencies), so we can conclude that this is a high-pass filter. To understand this, you can input DC (\(x_n = \ldots+1+1+1+1 \ldots \)) and Nyquist (\(x_n = \ldots-1+1-1+1\ldots \)) to the original equation in the time domain and see what you get. Alternatively, look at the transfer function only on the unit circle by substituting \(z = e^{i\omega n} \) and find the frequency response \(H(\omega) \).

Finally, we can draw the pole-zero diagram of the filter, which determines the filter to within a gain factor.