
Let’s do some exercises with filters.

Let’s start with one of the simplest MA filters, the noncausal, equally weighted,
three-point average.

yn =
1

3
(xn−1 + xn + xn+1) .

This is obviously linear (sum of inputs at three consecutive times) and time
invariant (since there is no explicit time dependence), and thus a filter. It
is noncausal since xn+1 appears (but is obviously related to the causal filter
yn = 1

3(xn + xn−1 + xn−2) - how?). It is MA since it contains xm for various m
but no ym.

First let’s find its impulse response,i.e., the output hn when the impulse is the
unit impulse (UI) (zero for all times n except n = 0, and x0 = 1). At times
before n = −1 all three terms are zero, and so the impulse response is zero. At
time n = −1the term xn+1 = x0 = 1

3
so h−1 = 1

3
. Similarly, at time n = 0 we

have h0 = 1
3
x0 = 1

3
and at time n = +1 we have h1 = 1

3
x0 = 1

3
. So the impulse

response is zero for all times except n = −1, 0, +1 where it is 1
3 . This shows

that this filter is Finite Impulse Response (FIR) (which is always the case for
MA filters). Note too that the impulse response of causal filters is always zero
for negative n, but since this is a noncausal filter, we can have h−1 6= 0.

Before finding the frequency response H(ω) it is always useful to find two special
values, H(0) (the frequency response at DC) and H(π) (the frequency response
at Nyquist frequency - the highest possible digital frequency.

Why do we call the maximal possible digital frequency ω = π? Remember
that sampling changes values in the time domain from t (in seconds) into n =
t/tsampling (a pure number), and values in the frequency domain from f (in
Hertz) into k = f/fsampling (a pure number). From the sampling theorem we
know that the maximal frequency is half the sampling frequency, fNyquist =
1
2fsampling , and so in the digital domain the highest frequency is 1

2 . (Taking
account the negative frequencies, the entire digital spectrum goes from −1

2 to
+1

2
, but for real signals the negative frequency part is a mirror reflection of

the positive frequency part, so we will only draw from DC to 1
2
.) But we want

the angular frequency ω = 2πf , so the maximal angular digital frequency is
2π 1

2 = π. (Taking account the negative frequencies, the entire digital angular
spectrum has width 2π and goes from −π to +π, but for real signals the negative
frequency part is a mirror reflection of the positive frequency part, so we will
only draw from DC to π. Also, note that ω = −πand ω = +π are actually
exactly the same frequency! This can be seen by noting that they are two
angles separated by 2π, or alternately by remembering that the frequency axis
is actually the zT restricted to the unit circle.)

Also note that we will always compute the frequency response for continuous ω,
i.e., H(ω). But this is digital signal processing - why don’t we limit ourselves to



a finite number of digital frequencies k, i.e., Hk? There are two reasons. First,
the input to the filter can be a digital sinusoid of any frequency - xn = sin(ωn).
Second, we don’t know ahead of time how many times n will be known; maybe
we will be given 2 values x0 and x1 which lead to a digital spectrum with 2
values X0 and X1. However, we may be given 4 values, or a million. So, we
don’t know how many spectral values will be relevant. If we find the frequency
response for all ω it is easy to return to a specific k value by sampling. For 2
values the frequencies will be DC and Nyquist; for 4 values DC, half Nyquist,
Nyquist, and negative half Nyquist.

To find the frequency response at DC we consider what happens when we enter
the DC signal xn = 1 for all n. This always results in yn = 1

3 (1 + 1 + 1) = 1.
So the output equals the input and thus their ratio is H(0) = 1.

To find the frequency response at Nyquist frequency we input a maximal fre-
quency signal xn = . . . − 1 + 1 − 1 + 1 . . . (positive for even n and negative
for odd n). From the law of filters yn must also be of maximal frequency, i.e.,
yn = . . . − y + y − y + y . . . for some value y. It is easy to do the math. For
even n we have y = 1

3 (−1 + 1 − 1) = −1
3 , and for odd n we similarly find

−y = 1
3
(1− 1 + 1) = +1

3
. In either case the ratio between yn and xn is −1

3
and

so |H(Nyquist)| = 1
3 and there is a phase reversal.

We can guess that this filter is a low-pass filter, since it passes DC without
attenuation, and attenuates the maximal frequency by a factor of three. To be
sure, let’s now find the entire frequency response. To do that we need to input
a sinusoid of arbitrary frequency ω

xn = eiωn

and find the output yn. From the law of filters we knw that we will find:

yn = H(ω)xn = H(ω)eiωn.

Substituting a complex exponential sinusoidal input (as usual it is extremely
messy use real sinusoids!)

yn =
1

3

(

eiω(n−1) + eiωn + eiω(n+1)
)

=
1

3

(

e−iω + 1 + eiω
)

eiωn

we immediately identify xn = eiωn so we have found

yn =
1

3

(

e−iω + 1 + eiω
)

xn

(we knew that this was going to happen!)

So

H(ω) =
1

3

(

1 + e−iω + eiω
)

=
1

3

(

1 + 2 cos(ω)
)



is the desired frequency response. It is easy to check that indeed H(0) = 1 and
H(π) = −1

3
.

We usually draw the square of the frequency response (since that gives us what
happens to the energy of the components, and ignores the phase).

ω

|H(ω)|
2

Figure 1: The (squared) frequency response of a simple three-point MA filter.

We see that this system is somewhat low-pass in character (i.e., lower frequencies
are passed while higher frequencies are attenuated). However, the attenuation
does not increase monotonically with frequency, and in fact the highest possible
frequency 1

2fs is not very well attenuated at all!

It turned out that the frequency response was real, which means that the angle
of H(ω) is identically zero, implying that there is no phase shift. For every
sinusoidal input, the output sinusoid is not only of the same frequency, it has
the same phase - it goes up and down and crosses zero in unison with the input.
Were we to repeat the exercise with the causal version yn = 1

3 (xn+xn−1+xn−2)
we would find the same absolute value |H(ω)|, meaning the same attenuation
at each frequency, but a non-zero phase shift. In fact, the phase shift is linear
in frequency, corresponding to a time shift of one sample. (Try it!) This is a
general characteristic of symmetric (or antisymmetric) MA filters.

Let’s try another three-point moving average.

yn =
1

4
xn−1 +

1

2
xn +

1

4
xn+1.

This formula is fast to compute since it involves no true multiplications (for
fixed point the multiplications are actually shifts, and for floating point they
are exponent decrements).

Once again this is obviously a noncausal MA filter (why?). Its impulse response
is zero for all times except n = −1, 0, +1 and h±1 = 1

4
, h0 = 1

2
. Since the filter

is symmetric the impulse response is exactly the filter coefficients (in general we
need to reverse the coefficients!).

What are our two special values for the frequency response? At DC xn = 1 for all
n and so y = 1

4 + 1
2 + 1

4 = 1. So, once again the gain at DC is one H(0) = 1. This



time the gain at Nyquist frequency is zero, since when xn = . . .−1+1−1+1 . . .
we get (for even n) y = 1

4
(−1) + 1

2
(+1) + 1

4
(−1) = 0, and so H(π) = 0.

Proceeding as before we can find the entire frequency response by substituting
a sinusoidal input of arbitrary frequency

yn =
1

4
eiω(n−1) +

1

2
eiωn +

1

4
eiω(n+1) =

(

1

4
e−iω +

1

2
+

1

4
eiω

)

eiωn

We identify xn = eiωn (we knew that this was going to happen!) and so

H(ω) =

(

1

4
e−iω +

1

2
+

1

4
eiω

)

=
1

2

(

1 + cos(ω)
)

a formula known as raised cosine. We compare the squared frequency responses
of our two MA filters in the figure.

ω

|H(ω)|
2

Figure 2: The (squared) frequency responses of two simple three-point average
filters. Both responses are clearly low-pass but not ideal. The average with
coefficients goes to zero at 1

2fs, but is ‘wider’ than the simple average.

This frequency response is low-pass in character like the previous one, and is
more satisfying since it does go to zero at 1

2fs. However it is far from being an
ideal low-pass filter that drops to zero response above some frequency; in fact
it is wider than the frequency response of the simple average.

What happens to the frequency response when we average over more signal
values? It is straightforward to show (hint: sum the geometric progression)
that for equal-weighting simple case

yn =
1

2L + 1

L
∑

l=−L

xn+l

the frequency response is
sin(Lx

2 )

L sin(x
2 )

as is depicted in the figure for L = 3, 5, 7, 9. We see that as L increases the filter
becomes more and more narrow, so that for large L only very low frequencies



are passed. However, this is only part of the story, since even for large L the
oscillatory behavior persists. Filters with higher L have a narrower main lobe
but more sidelobes.
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Figure 3: The squared frequency responses of simple averaging filters for L =
3, 5, 7 and 9. We see that as L increases the pass-band becomes narrower, but
oscillations continue.

By using different coefficients we can get different frequency responses. For
example, suppose that we need to pass frequencies below half the Nyquist fre-
quency essentially unattenuated, but need to block those above this frequency
as much as possible. We could use a 16-point moving average with the following
magically determined coefficients

0.003936, −0.080864, 0.100790, 0.012206,
−0.090287, −0.057807, 0.175444, 0.421732,

0.421732, 0.175444, −0.057807, −0.090287,
0.012206, 0.100790, −0.080864, 0.003936

the frequency response of which is depicted in Figure 4. While some oscillation
exists in both the pass-band and the stop-band, these coefficients perform the
desired task relatively well.
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Figure 4: The (squared) frequency responses of a 16-coefficient low-pass filter.
With these coefficients the lower frequency components are passed essentially
unattenuated, while the higher components are strongly attenuated.



Let’s try another MA filter - the first finite difference.

yn = (∆̂x)n = xn − xn−1

This too is obviously a filter and MA, but is causal. Since this is a causal filter
we know that the impulse response will be zero for all negative n. It is easy to
see that h0 = +1 and h1 = −1, which is exactly the coefficients h0 = a0 and
h1 = a1, and not in reversed order! This is precisely why we use convolutions in
the first place (where one index goes up and the other goes down), rather than
correlations (where both indexes move in the same direction). Some people
prefer using correlations, but then the impulse response is not equal to the
coefficients.

As usual, before calculating the full frequency response let’s check our two
special frequencies. For DC (substitute xn = 1 for all n), yn = 0 for all n,
so H(0) = 0. For Nyquist (substitute xn = −1 + 1 − 1 + 1), yn = ±2, so
H(π) = 2. This is obviously a high-pass filter!

To find the entire frequency response we substituting a complex exponential
sinusoidal input.

yn = eiωn − eiω(n−1) =
(

1 − e−iω
)

eiωn

and once again we xn = eiωn (we knew that would happen!). So we have found

H(ω) =
(

1 − e−iω
)

= e−iω/2
(

e−iω/2 − e−iω/2
)

= ie−iω/2 2 sin(ω/2)

so that |H(ω)| = 2 sin(ω/2) and it is easy to check that indeed |H(0)| = 0 and
|H(π)| = 2. The squared frequency response is depicted in the figure.
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Figure 5: The squared frequency response of a finite difference filter. With these
coefficients the lower frequency components are passed essentially unattenuated,
while the higher components are strongly attenuated.

We can now see the relationship between the finite difference for digital signals
and the derivative for analog signals. What does the true derivative do in the
frequency domain? The derivative of sin(ωt) is ω cos(ωt), which means that



|H(ω)| = ω linear in frequency (with slope 1), and the phase shift is π/2 for all
frequencies. We see in the figure that the finite difference’s frequency response
is close to being linear with slope 1, but not precisely so.

Let’s try one last MA filter

yn = xn+1 + xn−1

and we’ll skip directly to the special values - you should know how to find them
by now! We find H(0) = 1 and H(π) = 1. What’s happening? This can’t be an
all-pass filter! In such cases we can try to see what happens at an intermediate
frequency, such as half-Nyquist. In the time domain xn = . . .−10+10−10+10 . . .
and so we find yn = 0 for all n (note that this trick doesn’t always work this
well). This means that this is a band-stop filter! I’ll leave it as an exercise to
find the full frequency response (but I’ll draw it in the figure!). Incidentally,
this is a special case of the sinusoid blocker yn = xn+1 − 2 cos(Ω) + xn−1.
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Figure 6: The squared frequency response of a band-stop filter.

Now let’s move on to an AR filter. A simple causal AR filter with one delayed
output looks like this:

yn = (1 − β)xn + βyn−1 0 ≤ β < 1

where 0 ≤ β ≤ 1. We will shortly see why we have supplied a gain to the input.

Note that by changing β this AR filter can be set to track rapidly varying signals
or to do a better job of removing noise from slowly varying ones. When β = 0
(corresponding to L = 0) the AR filter output yn is simply equal to the input,
no noise is averaged out but no bandwidth lost either. As β increases the past
values assume more importance, and the averaging kicks in at the expense of not
losing the ability to track the input as rapidly. When β → 1 (corresponding to
infinite L) the filter paradoxically doesn’t look at the current input at all! Unlike
a moving average filter, this AR filter never explicitly removes a signal value
that it has seen from its consideration. Instead, past values are slowly ‘forgotten’
(at least for β < 1). For large β signal values from relatively long ago are still
relatively important, while for small β past values lose their influence rapidly.



You can think of this AR filter as being similar to an MA filter operating on L
previous values, the times before n − L having been forgotten.

What is the impulse response of this filter? Since the filter is causal we know
that hn = 0 for all negative n. When n = 0 we easily have h0 = (1 − β)1 + 0 =
1 − β. Next, when n = 1 we need to feed back y0 into the formula, and
h1 = (1 − β)0 + βy0 = β(1 − β). Continuing by explicitly carrying out the
recursion we find that each value is equal to the previous one times β, i.e.,
hn+1 = βhn . For 0 < β < 1 this decays to zero, but never actually becomes
zero, so this filter is Infinite Impulse Response (IIR).

Let’s check the frequency response at our two special frequencies. At DC y =
(1−β)1+βy, which means y = 1 and H(0) = 1 (now you see why we applied that
gain to the input?). At Nyquist y = (1−β)1−βy meaning that y = (1−β)/(1+β)
which is always less than one, and gets smaller and smaller as β increases until
finally becoming zero when β = 1. This implies that we could a low-pass filter.

There are two ways to find the full frequency response. First - the hard way,
which involves unraveling the recursion into an infinite convolution.

yn = (1 − β)xn + β(1 − β)xn−1 + β2(1 − β)xn−2 + β3(1 − β)xn−3 + . . .

We see that the coefficient corresponding to xn−l is smaller than that of xn by
a factor of βl , and so for all practical purposes we can neglect the contributions
for times before some l. For example, if β = 0.99 and we neglect terms that are
attenuated by e−1, we need to retain about 100 terms; however for β = 0.95
only about 20 terms are needed, for β = 0.9 we are down to ten terms, and for
β = 0.8 to 5 terms. It is not uncommon to use β = 0.5 where only the xn and
xn−1 terms are truly relevant, the xn−2 term being divided by 4.

Now we input our complex sinusoid and use the formula for the sum of a geo-
metric series.

yn = (1 − β)eiωn + β(1 − β)eiω(n−1) + β2(1 − β)eiω(n−2) + . . .

= (1 − β)

∞
∑

k=0

(βe−iω)keiωn

=
(1 − β)

(1 − βe−iω)
eiωn

and we see that xn = eiωn magically appeared on the right (we knew that this
was going to happen!). We now identify

H(ω) =
(1 − β)

(1 − βe−iω)

as the desired frequency response.



We could have done this much more easily by exploiting the law of filters. If
xn = eiωn then we yn = H(ω)eiωn, and so

H(ω)eiωn = (1 − β)eiωn + βH(ω)eiω(n−1) = (1 − β)eiωn + βe−iωH(ω)eiωn

which immediately leads to the previous equation, without the need for summing
a geometric series.

We can find the squared frequency response to be

|H(ω)|2 =
1 − 2β + β2

1 − 2β cos(ω) + β2

which we plot for several values of β in the figure.
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Figure 7: The (squared) frequency response of the simple AR low-pass filter for
several different values of β. From top to bottom β = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95.

We see in the figure that indeed the AR filter is more low-pass for higher β.

As our last example, let’s consider an integration filter. For analog signals the
integral of sin(ωt) is −1/ω cos(ωt), so that |H(ω)| = 1/ω (and there is a phase
shift of π). For digital signals we define the infinite accumulator (which is the
inverse of the first finite difference)

yn = xn + yn−1

which unravels to the following infinite sum:

yn = xn + xn−1 + xn−2 + . . . =

∞
∑

m=0

xn−m .

We can write this in terms of the time delay operator

y = (1 + ẑ + ẑ2 + . . .)x = Υx

where we have defined the infinite accumulator operator

Υ ≡

∞
∑

m=0

ẑmxn



which roughly corresponds to the integration operator for continuous signals.
The finite difference ∆ ≡ (1−ẑ) and the infinite accumulator are related through
∆Υ = 1 and Υ∆ = 1, where 1 is the identity operator.

What happens when the infinite accumulator operates on DC? Since we are
summing the same constant over and over again the sum obviously gets larger
and larger in absolute value. This is what we previously called instability, since
the output of the filter grows without limit although the input stays small.
Such unstable behavior could never happen with an MA filter; and it is almost
always an unwelcome occurrence, since all practical computational devices will
eventually fail when signal values grow without limit.

What is the frequency response of the infinite accumulator? If you have gotten
this far, it shouldn’t be hard for you to see that

H(ω)eiωn = eiωn + H(ω)eiω(n−1)

which means that

H(ω) =
1

1 − e−iω
= −ieiω/2 1

2 sin(ω/2)

if you plot this, you will find that it is very close to the frequency response of
the analog integral.


